American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Feb 2016
Procoagulant and Fibrinolytic Activity after Polytrauma in Rat.
The purpose of this study was to determine whether trauma-induced coagulopathy is due to changes in 1) thrombin activity, 2) plasmin activity, and/or 3) factors that stimulate or inhibit thrombin or plasmin. Sprague-Dawley rats were anesthetized with 1-2% isoflurane/100% oxygen, and their left femoral artery and vein were cannulated. Polytrauma included right femur fracture, and damage to the small intestines, the left and medial liver lobes, and right leg skeletal muscle. ⋯ The levels of prothrombin and plasminogen were 30-100 times higher than their respective active enzymes. Polytrauma and hemorrhage in rats lead to a fibrinolytic coagulopathy, as demonstrated by an elevation in plasmin activity, D-dimers, and tPA. These results are consistent with the observed clinical benefit of tranexamic acid in trauma patients.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jan 2016
Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.
De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. ⋯ Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2015
Variable Responses of Regional Renal Oxygenation and Perfusion to Vasoactive Agents in Awake Sheep.
Vasoactive agents are used in critical care to optimize circulatory function, but their effects on renal tissue oxygenation in the absence of anesthesia remain largely unknown. Therefore, we assessed the effects of multiple vasoactive agents on regional kidney oxygenation in awake sheep. Sheep were surgically instrumented with pulmonary and renal artery flow probes, and combination fiber-optic probes, in the renal cortex and medulla, comprising a fluorescence optode to measure tissue Po2 and a laser-Doppler probe to assess tissue perfusion. ⋯ Arginine vasopressin (3.3 ± 0.5 μg/h) caused similar decreases in RBF and renal oxygen delivery, but did not significantly alter renal oxygen consumption or cortical or medullary LDF or Po2. Captopril had no observable effects on cortical or medullary LDF or Po2, at a dose that increased renal oxygen delivery by 24%, but did not significantly alter renal oxygen consumption. We conclude that vasoactive agents have diverse effects on regional kidney oxygenation in awake sheep that are not predictable from their effects on LDF, RBF, or total renal oxygen delivery and consumption.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2015
Catecholaminergic neurons in the comissural region of the nucleus of the solitary tract modulate hyperosmolality-induced responses.
Noradrenergic A2 neurons of the nucleus of the solitary tract (NTS) have been suggested to contribute to body fluid homeostasis and cardiovascular regulation. In the present study, we investigated the effects of lesions of A2 neurons of the commissural NTS (cNTS) on the c-Fos expression in neurons of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, arterial pressure, water intake, and urinary excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats (280-320 g) received an injection of anti-dopamine-β-hydroxylase-saporin (12.6 ng/60 nl; cNTS/A2-lesion, n = 28) or immunoglobulin G (IgG)-saporin (12.6 ng/60 nl; sham, n = 24) into the cNTS. ⋯ Contrary to sham rats, intragastric 2 M NaCl also increased arterial pressure in cNTS/A2-lesioned rats (16 ± 3, vs. sham: 2 ± 2 mmHg 60 min after the intragastric load; n = 9), an effect blocked by the pretreatment with the vasopressin antagonist Manning compound (0 ± 3 mmHg; n = 10). In addition, cNTS/A2 lesions enhanced hyperosmolality-induced water intake (10.5 ± 1.4, vs. sham: 7.7 ± 0.8 ml/60 min; n = 8-10), without changing renal responses to hyperosmolality. The results suggest that inhibitory mechanisms dependent on cNTS/A2 neurons reduce water intake and vasopressin-dependent pressor response to an acute increase in plasma osmolality.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2015
ReviewPPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation.
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. ⋯ These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.