American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Aug 2014
Impact of renal medullary three-dimensional architecture on oxygen transport.
We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies. The model represents the arrangement of tubules around a vascular bundle in the outer medulla and around a collecting duct cluster in the upper inner medulla. Model simulations yield marked gradients in intrabundle and interbundle interstitial fluid oxygen tension (PO2), NaCl concentration, and osmolality in the outer medulla, owing to the vigorous active reabsorption of NaCl by the thick ascending limbs. ⋯ Additionally, a simulation that represents low medullary blood flow suggests that the separation of thick limbs from the vascular bundles substantially increases the risk of the segments to hypoxic injury. When nephrons and vessels are more homogeneously distributed, luminal PO2 in the thick ascending limb of superficial nephrons increases by 66% in the inner stripe. Furthermore, simulations predict that owing to the Bohr effect, the presumed greater acidity of blood in the interbundle regions, where thick ascending limbs are located, relative to that in the vascular bundles, facilitates the delivery of O2 to support the high metabolic requirements of the thick limbs and raises NaCl reabsorption.
-
Am. J. Physiol. Renal Physiol. · Jul 2014
Novel mechanisms of Na+ retention in obesity: phosphorylation of NKCC2 and regulation of SPAK/OSR1 by AMPK.
Enhanced tubular reabsorption of salt is important in the pathogenesis of obesity-related hypertension, but the mechanisms remain poorly defined. To identify changes in the regulation of salt transporters in the kidney, C57BL/6 mice were fed a 40% fat diet [high-fat diet (HFD)] or a 12% fat diet (control diet) for 14 wk. Compared with control diet-fed mice, HFD-fed mice had significantly greater elevations in weight, blood pressure, and serum insulin and leptin levels. ⋯ In vitro, activation of AMPK led to a reduction in phospho-SPAK/phospho-OSR1 in AMPK(+/+) murine embryonic fibroblasts (MEFs), but no effect was seen in AMPK(-/-) MEFs, indicating an AMPK-mediated effect. Activation of the with no lysine kinase/SPAK/OSR1 pathway with low-NaCl solution invoked a greater elevation in phospho-SPAK/phospho-OSR1 in AMPK(-/-) MEFs than in AMPK(+/+) MEFs, consistent with a negative regulatory effect of AMPK on SPAK/OSR1 phosphorylation. In conclusion, this study identifies increased phosphorylation of NKCC2 on S126 as a hitherto-unrecognized mediator of enhanced Na(+) reabsorption in obesity and identifies a new role for AMPK in regulating the activity of SPAK/OSR1.
-
Am. J. Physiol. Renal Physiol. · Jun 2014
Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia.
Hyperphosphatemia contributes to increased cardiovascular mortality through vascular calcification (VC) in patients with chronic kidney disease (CKD). Malnutrition and inflammation are also closely linked to an increased risk of cardiovascular death in CKD. However, the effects of Pi overload on inflammation and malnutrition remain to be elucidated. ⋯ Regression analysis showed that serum Pi levels closely correlated with the extent of inflammation, malnutrition, and VC. Also, in cultured human vascular smooth muscle cells, high-Pi medium directly increased the expression of TNF-α in advance of the increase in osteochondrogenic markers. Our data suggest that dietary Pi overload induces systemic inflammation and malnutrition, accompanied by VC and premature death in CKD, and that inhibition of Pi loading through dietary or pharmacological interventions or anti-inflammatory therapy may be a promising treatment for the prevention of malnutrition-inflammation-atherosclerosis syndrome.
-
Am. J. Physiol. Renal Physiol. · Jun 2014
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Modulation of Na(+)-Cl(-) cotransporter (NCC) activity is essential to adjust K(+) excretion in the face of changes in dietary K(+) intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K(+) diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K(+)-citrate diets for 4 days. ⋯ The positive effect of the high-K(+) diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K(+)-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K(+) increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K(+) diet.
-
Am. J. Physiol. Renal Physiol. · May 2014
Increasing cGMP-dependent protein kinase activity attenuates unilateral ureteral obstruction-induced renal fibrosis.
Our previous studies support the protective effect of cGMP and cGMP-dependent protein kinase I (PKG-I) pathway on the development of renal fibrosis. Therefore, in the present studies, we determined whether pharmacologically or genetically increased PKG activity attenuates renal fibrosis in a unilateral ureteral obstruction (UUO) model and also examined the mechanisms involved. To increase PKG activity, we used the phosphodiesterase 5 inhibitor sildenafil and PKG transgenic mice. ⋯ In vitro data further demonstrated that both macrophages and proximal tubular cells were important sources of UUO-induced renal TGF-β levels. The interaction between macrophages and tubular cells contributes to TGF-β-induced renal fibrosis. Taken together, these data suggest that increasing PKG activity ameliorates renal fibrosis in part through regulation of macrophage and tubular cell function, leading to reduced TGF-β-induced fibrosis.