American journal of physiology. Renal physiology
-
Renal anemia has been recognized as a characteristic complication of chronic kidney disease. Although many factors are involved in renal anemia, the predominant cause of renal anemia is a relative deficiency in erythropoietin (EPO) production. To date, exogenous recombinant human (rh)EPO has been widely used as a powerful drug for the treatment of patients with renal anemia. ⋯ The induction of endogenous EPO is another therapeutic approach that might have advantages over rhEPO administration. However, the physiological and pathophysiological regulation of EPO are not fully understood, and this lack of understanding has hindered the development of an endogenous EPO inducer. In this review, we will discuss the current treatment for renal anemia and its drawbacks, provide an overview of EPO regulation in healthy and diseased conditions, and propose future directions for therapeutic trials that more directly target the underlying pathophysiology of renal anemia.
-
Am. J. Physiol. Renal Physiol. · Sep 2013
Proximal tubule PPARα attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction.
We examined the effects of increased expression of proximal tubule peroxisome proliferator-activated receptor (PPAR)α in a mouse model of renal fibrosis. After 5 days of unilateral ureteral obstruction (UUO), PPARα expression was significantly reduced in kidney tissue of wild-type mice but this downregulation was attenuated in proximal tubules of PPARα transgenic (Tg) mice. When compared with wild-type mice subjected to UUO, PPARα Tg mice had reduced mRNA and protein expression of proximal tubule transforming growth factor (TGF)-β1, with reduced production of extracellular matrix proteins including collagen 1, fibronectin, α-smooth muscle actin, and reduced tubulointerstitial fibrosis. ⋯ Increased expression of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in wild-type mice was also significantly reduced in kidney tissue of PPARα Tg mice. In contrast, the expression of anti-inflammatory cytokines IL-10 and arginase-1 was significantly increased in kidney tissue of PPARα Tg mice when compared with wild-type mice subjected to UUO. Our studies demonstrate several mechanisms by which preserved expression of proximal tubule PPARα reduces tubulointerstitial fibrosis and inflammation associated with obstructive uropathy.
-
Am. J. Physiol. Renal Physiol. · Sep 2013
Architecture of interstitial nodal spaces in the rodent renal inner medulla.
Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. ⋯ The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.
-
Am. J. Physiol. Renal Physiol. · Aug 2013
TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression.
Transforming growth factor (TGF)-β is a major mediator of kidney fibrosis. In the past decade it was recognized that, besides canonical Smad signaling, many other signaling pathways participate in the process of TGF-β-induced fibrogenesis. One such pathway involves mammalian target of rapamycin complex (mTORC)1. ⋯ Pretreatment with rapamycin or shRNA for a regulatory molecule of mTORC1, Raptor, reduced TGF-β-induced COL1A2-luc activity and collagen I protein expression. mTORC1 inhibition also prevented the TGF-β-stimulated increase in both hypoxia-responsive element (HRE) activity and HIF-1α protein expression, while activation of mTORC1 by active Rheb increased basal but not TGF-β-induced HRE activity. shRNA to Smad3 reduced HRE activity, while overexpression of Smad3 increased HIF-1α protein expression and activity in an mTORC1-dependent manner. Lastly, overexpression of HIF-1α bypassed the inhibitory effect of mTORC1 blockade on collagen expression. These results suggest that Smad3/mTORC1 interaction to promote HIF-1 expression is a key step in normoxic kidney fibrogenesis.
-
Am. J. Physiol. Renal Physiol. · Aug 2013
Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury.
Autophagy is a cellular recycling process induced in response to many types of stress. However, little is known of the signaling pathways that regulate autophagy during acute kidney injury (AKI). Bcl-2/adenovirus E1B 19 kDa-interacting protein (BNIP)3 and sestrin-2 are the target proteins of hypoxia-inducible factor (HIF)-1α and p53, respectively. ⋯ Overexpression of BNIP3 or sestrin-2 in these cells induced light chain 3 expression and formation of autophagosomes. Interestingly, BNIP3-induced autophagosomes were mainly localized to the mitochondria, suggesting that this protein selectively induces mitophagy. These observations demonstrate that autophagy is induced in renal tubules by at least two independent pathways involving p53-sestrin-2 and HIF-1α-BNIP3, which may be activated by different types of stress to protect the renal tubules during AKI.