American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Nov 2007
Changes in urinary bladder smooth muscle function in response to colonic inflammation.
Visceral organ "cross talk" is suspected to contribute to multiorgan symptomatology found in conditions such as irritable bowel syndrome and interstitial cystitis. The goal of the present study was to investigate the short- and long-term effects of acute colitis on bladder detrusor muscle contractility. We hypothesized that inflammation of the colon leads to changes in bladder function via direct changes in detrusor smooth muscle contractility. ⋯ However, abnormalities in bladder detrusor muscle contractility occurred in response to EFS and CCh but not KCl. During and after recovery from colonic inflammation (days 15 and 30 post-TNBS enema), changes in bladder detrusor muscle contractility in response to EFS and CCh returned to control levels. We found that a transient colonic inflammatory insult significantly attenuates the amplitude of bladder detrusor muscle contractions in vitro, at least in part, through changes in cholinergic innervation, which are reversible after recovery from the colitis.
-
Am. J. Physiol. Renal Physiol. · Oct 2007
Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL.
In renal epithelia, vasopressin influences salt and water transport, chiefly via vasopressin V(2) receptors (V(2)Rs) linked to adenylyl cyclase. A combination of vasopressin-induced effects along several distinct portions of the nephron and collecting duct system may help balance the net effects of antidiuresis in cortex and medulla. Previous studies of the intrarenal distribution of V(2)Rs have been inconclusive with respect to segment- and cell-type-related V(2)R expression. ⋯ Macula densa cells constitutively showed strong NKCC2 phosphorylation. Results suggest comparably significant effects of vasopressin-induced V(2)R signaling in MTAL and in connecting tubule/collecting duct principal cells across the three species. Strong V(2)R expression in macula densa may be related to tubulovascular signal transfer.
-
Am. J. Physiol. Renal Physiol. · Sep 2007
Postnatal adrenalectomy impairs urinary concentrating ability by increased COX-2 and leads to renal medullary injury.
We hypothesized that aldosterone promotes development of the renal medulla in the postnatal period and that cyclooxygenase-2 (COX-2) activity contributes to renal dysfunction after impaired aldosterone signaling. To test these hypotheses, rat pups underwent either sham operation or adrenalectomy at postnatal day 10. Adrenalectomized rats were divided into no steroid substitution (ADX), corticosterone replacement (ADX-C), and corticosterone and DOCA substitution (ADX-CD) groups that received subcutaneous pellets with steroids. ⋯ After fluid deprivation, parecoxib attenuated weight loss and the increase in plasma Na+ concentration and osmolality. It is concluded that mineralocorticoid is required for normal postnatal development of the renal medulla. COX-2 contributes to impaired urine-concentrating ability, NaCl loss, and extracellular volume depletion in postnatal mineralocorticoid deficiency.
-
Am. J. Physiol. Renal Physiol. · Sep 2007
Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice.
Inflammation after renal ischemia-reperfusion (IR) injury is a major contributor to renal cell death. We previously demonstrated that several volatile anesthetics protect against renal IR injury and necrosis in rats in vivo. We subsequently showed that volatile anesthetics produced direct anti-inflammatory and anti-necrotic effects in cultured proximal tubule cells in vitro. ⋯ However, only the differential reduction of NK1.1+ lymphocytes persisted 24 h after renal ischemia. Therefore, we conclude that isoflurane anesthesia significantly attenuated renal IR injury in mice by reducing inflammation and modulating leukocyte influx. In particular, neutrophil, macrophage, and NK1.1+ lymphocyte cell modulation may play a significant role in renal protection by isoflurane anesthesia.
-
Am. J. Physiol. Renal Physiol. · Sep 2007
Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.
Three-dimensional architecture of vasculature and nephrons in rat renal papilla was assessed by digital reconstruction. Descending vasa recta (DVR), ascending vasa recta (AVR), descending thin limbs (DTLs), ascending thin limbs (ATLs), and collecting ducts (CDs) were identified with antibodies against segment-specific proteins. DTLs are distributed nonuniformly in transverse sections of papilla, but lateral compartmentation between DTLs and CD clusters that occurs in outer IM makes no contribution to concentrating mechanism in papilla. ⋯ Fewer ATLs exist in the final 1 mm, as there are fewer loops and the number of these nodal arrangements is therefore reduced. However, tips of many of those loops reaching this area have bends with 50-100% greater transverse lengths than bends of loops near the IM base. This may be significant for solute movement out of loop bends.