American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Jan 2007
Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor.
Vasopressin and angiotensin II (ANG II) play a major role in renal water and Na(+) reabsorption. We previously demonstrated that ANG II AT(1) receptor blockade decreases dDAVP-induced water reabsorption and AQP2 levels in rats, suggesting cross talk between these two peptide hormones (Am J Physiol Renal Physiol 288: F673-F684, 2005). To directly address this issue, primary cultured inner medullary collecting duct (IMCD) cells from male Sprague-Dawley rats were treated for 15 min with 1) vehicle, 2) ANG II, 3) ANG II + the AT(1) receptor blocker candesartan, 4) dDAVP, 5) ANG II + dDAVP, or 6) ANG II + dDAVP + candesartan. ⋯ This effect was inhibited by cotreatment with 10(-5) M candesartan. ANG II-induced cAMP accumulation and AQP2 targeting were inhibited by inhibition of PKC activity. In conclusion, ANG II plays a role in the regulation of AQP2 targeting to the plasma membrane in IMCD cells through AT(1) receptor activation and potentiates the effect of dDAVP on AQP2 plasma membrane targeting.
-
Am. J. Physiol. Renal Physiol. · Dec 2006
Resistance of mice lacking the serum- and glucocorticoid-inducible kinase SGK1 against salt-sensitive hypertension induced by a high-fat diet.
Mineralocorticoids enhance expression and insulin stimulates activity of the serum- and glucocorticoid-inducible kinase SGK1, which activates the renal epithelial Na+)channel (ENaC). Under a salt-deficient diet, SGK1 knockout mice (sgk1-/-) excrete significantly more NaCl than their wild-type littermates (sgk1+/+) and become hypotensive. The present experiments explored whether SGK1 participates in the hypertensive effects of a high-fat diet and high-salt intake. ⋯ Additional salt intake (1% NaCl in the drinking water for 25 days) on top of a high-fat diet did not affect hyperinsulinemia or hyperlipidemia but increased fluid intake, urinary flow rate, and urinary NaCl excretion significantly more in sgk1-/- than in sgk1+/+ mice. Furthermore, in animals receiving a high-fat diet, additional salt intake increased blood pressure only in sgk1+/+ mice (to 132 +/- 3 mmHg) but not in sgk1-/- mice (120 +/- 4 mmHg). Thus lack of SGK1 protects against the hypertensive effects of a combined high-fat/high-salt diet.
-
Am. J. Physiol. Renal Physiol. · Nov 2006
Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction.
The renin-angiotensin system is well known to be involved in the pathophysiological changes in renal function after obstruction of the ureter. Previously, we demonstrated that bilateral ureteral obstruction (BUO) is associated with dramatic changes in the expression of both renal sodium transporters and aquaporin water channels (AQPs). We now examined the effects of the AT(1)-receptor antagonist candesartan on the dysregulation of AQPs and key renal sodium transporters in rats subjected to 24-h BUO and followed 2 days after release of BUO (BUO-2R). ⋯ Moreover, candesartan treatment attenuated induction of cyclooxygenase 2 (COX-2) expression in the inner medulla, suggesting that COX-2 induction in response to obstruction is regulated by ANG II. In conclusion, candesartan prevents dysregulation of AQP2, sodium transporters, and development of polyuria seen in BUO. This strongly supports the view that candesartan protects kidney function in response to urinary tract obstruction.
-
Am. J. Physiol. Renal Physiol. · Nov 2006
Upregulation of EphA2 during in vivo and in vitro renal ischemia-reperfusion injury: role of Src kinases.
Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury in both native kidneys and renal allografts. Disruption of the actin cytoskeleton is a key event with multiple repercussions on cell adhesion and function during IRI. However, receptors involved in regulating cytoskeletal repair following injury have not been identified. ⋯ Stimulation of renal tubular epithelial cells with the EphA2 ligand ephrin-A1 caused tyrosine phosphorylation of endogenous EphA2, paxillin, and an unidentified approximately 65-kDa protein and resulted in increased cortical F-actin staining. In summary, under in vitro conditions mimicking IRI, EphA2 expression is strongly upregulated through a Src kinase-dependent pathway. Interactions between upregulated EphA2 and its ephrin ligands may provide critical cell contact-dependent, bidirectional cues for cytoskeletal repair in renal IRI.
-
Am. J. Physiol. Renal Physiol. · Nov 2006
Pentoxifylline protects against endotoxin-induced acute renal failure in mice.
Acute renal failure (ARF) in septic patients drastically increases the mortality to 50-80%. Sepsis induces several proinflammatory cytokines including tumor necrosis factor-alpha (TNF-alpha), a major pathogenetic factor in septic ARF. Pentoxifylline has several functions including downregulation of TNF-alpha and endothelia-dependent vascular relaxation. ⋯ The renal protection against endotoxemia with pentoxifylline was again observed as assessed by GFR (119.8 +/- 18.0 vs. 44.5 +/- 16.2 microl/min, P < 0.05) and renal blood flow (0.86 +/- 0.08 vs. 0.59 +/- 0.05 ml/min, P < 0.05). Renal vascular resistance significantly decreased with the pentoxifylline (91.0 +/- 5.8 vs. 178.0 +/- 7.6 mmHg.ml(-1).min(-1), P < 0.01). Thus pentoxifylline, an FDA-approved drug, protects against endotoxemia-related ARF and involves a decrease in serum TNF-alpha, IL-1beta, and NO as well as a decrease in renal iNOS and ICAM-1.