American journal of physiology. Renal physiology
-
Am. J. Physiol. Renal Physiol. · Dec 2015
Spironolactone ameliorates arterial medial calcification in uremic rats: the role of mineralocorticoid receptor signaling in vascular calcification.
Vascular calcification (VC) is a critical complication in patients with chronic kidney disease (CKD). The effects of spironolactone (SPL), a mineralocorticoid receptor (MR) antagonist, on VC have not been fully investigated in CKD. The present in vivo study determined the protective effects of SPL on VC in CKD rats. ⋯ SPL neither lowered blood pressure level nor induced hyperkalemia. Treatment of CKD rats for the last 2 wk with 100 mg·kg(-1)·day(-1) SPL attenuated VC compared with CKD rats with the same degree of kidney function and hyperphosphatemia. In conclusion, SPL dose dependently inhibits the progression of VC by suppressing MR signaling, local inflammation, osteogenic transition, and apoptosis in the aortas of CKD rats.
-
Am. J. Physiol. Renal Physiol. · Nov 2015
ReviewMolecular mechanisms of ischemic preconditioning in the kidney.
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. ⋯ HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
-
Am. J. Physiol. Renal Physiol. · Oct 2015
Fetuin-A decrease induced by a low-protein diet enhances vascular calcification in uremic rats with hyperphosphatemia.
Although dietary phosphate restriction is important for treating hyperphosphatemia in patients with chronic kidney disease, it remains unclear whether a low-protein diet (LPD), which contains low phosphate, has beneficial effects on malnutrition, inflammation, and vascular calcification. The effects of LPD on inflammation, malnutrition, and vascular calcification were therefore assessed in rats. Rats were fed a normal diet or diets containing 0.3% adenine and low/normal protein and low/high phosphate. ⋯ A high-phosphate diet increased aortic calcium content, which was enhanced by LPD. Reduced fetal calf serum in the medium of cultured vascular smooth muscle cells enhanced phosphate-induced formation of calcium-phosphate precipitates in the media and calcification of vascular smooth muscle cells, both of which were prevented by fetuin-A administration. Our results suggest that phosphate restriction by restricting dietary protein promotes vascular calcification by lowering the systemic fetuin-A level and increasing serum calcium-phosphate precipitates and induces inflammation and malnutrition in uremic rats fed a high-phosphate diet.
-
Am. J. Physiol. Renal Physiol. · Oct 2015
Architecture of the human renal inner medulla and functional implications.
The architecture of the inner stripe of the outer medulla of the human kidney has long been known to exhibit distinctive configurations; however, inner medullary architecture remains poorly defined. Using immunohistochemistry with segment-specific antibodies for membrane fluid and solute transporters and other proteins, we identified a number of distinctive functional features of human inner medulla. In the outer inner medulla, aquaporin-1 (AQP1)-positive long-loop descending thin limbs (DTLs) lie alongside descending and ascending vasa recta (DVR, AVR) within vascular bundles. ⋯ In rodent inner medulla, fenestrated capillaries abut CDs along their entire length, paralleling ascending thin limbs (ATLs), forming distinct compartments (interstitial nodal spaces; INSs); however, in humans this architecture rarely occurs. Thus INSs are relatively infrequent in the human inner medulla, unlike in the rodent where they are abundant. UT-B is expressed within the papillary epithelium of the lower inner medulla, indicating a transcellular pathway for urea across this epithelium.
-
Am. J. Physiol. Renal Physiol. · Sep 2015
ReviewMolecular phenotyping of clinical AKI with novel urinary biomarkers.
Acute kidney injury (AKI) is a common hospital complication. There are no effective treatments to minimize kidney injury or limit associated morbidity and mortality. Currently, serum creatinine and urine output remain the gold standard used clinically in the diagnosis of AKI. ⋯ In this review, we will highlight the implications of what these patients may represent and the need for better phenotyping of AKI by etiology, severity of injury, and ability to recover. We will discuss two AKI biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) and breast regression protein-39 (BRP-39)/YKL-40, that exemplify the need to characterize the complexity of the biological meaning behind the biomarker, beyond elevated levels reporting on tissue injury. Ultimately, careful phenotyping of AKI will lead to identification of therapeutic targets and appropriate patient populations for clinical trials.