Autonomic neuroscience : basic & clinical
-
Cardiovascular dysfunction usually occurs after high thoracic and cervical spinal cord injury (SCI). The disruption of supraspinal vasomotor pathways (SVPs) results in the loss of bulbospinal regulation of sympathetic preganglionic neurons, leading to hypotension and compensatory tachycardia at rest. Episodic autonomic dysreflexia can develop upon sensory stimulation below the level of injury. ⋯ Based on these results, we examined cardiovascular responses after different lesions at spinal level T4, including lateral or dorsal hemisection, dorsolateral or complete transection. Hemodynamic dysfunction and autonomic dysreflexia were only elicited in rats with complete T4 transections when all SVPs were disrupted. Hence, F344 rats with complete T4 transections provide a reliable model for investigating means to improve cardiovascular functional recovery after SCI.
-
Electrical stimulation of the cervical vagus nerve reduces infarct size by approximately 50% after cerebral ischemia in rats. The mechanism of ischemic protection by vagus nerve stimulation (VNS) is not known. In this study, we investigated whether the infarct reducing effect of VNS was mediated by activation of the parasympathetic vasodilator fibers that originate from the sphenopalatine ganglion (SPG) and innervate the anterior cerebral circulation. ⋯ SPG ablation did not abolish this effect; the reduction in infarct volume following VNS was 58% in SPG-damaged animals, 41% in SPG-intact animals (p>0.05). In both SPG-intact and SPG-damaged animals VNS treatment resulted in better motor outcome (p<0.05 vs. corresponding controls for both). Our findings show that VNS can protect the brain against acute ischemic injury, and that this effect is not mediated by SPG projections.
-
Immunohistochemical studies of sympathetic ganglia have indicated that the normal rat superior cervical ganglion contains both SP-IR and CGRP-IR fibres, and CGRP- and SP-immunoreactivity coexist in some fibres. In rat sympathetic ganglia decentralization by preganglionic denervation leads to intraganglionic increase of peptidergic fibres immunoreactive (IR) for substance P (SP) and calcitonin gene-related peptide. We explored the sources of SP- and CGRP-IR fibres in normal and in chronically decentralized rat SCGs. ⋯ Normal and chronically decentralized ganglia were also injected with fluorescent tracer Fluorogold for retrograde tracing of extrinsic fibres back to their neurones of origin. The observations suggest that in normal SCG in the rat the SP-IR and CGRP-IR nerve fibres are derived via direct links from vagus and glossopharyngeal nerves and the cervical plexus, or from nerve fibres running along the cervical sympathetic trunk, and the external carotid and the internal carotid nerves. Sensory nerve inputs to the rat SCG following decentralization may contribute to the low levels of ganglionic activation observable in the autonomic failure of multiple system atrophy in man.
-
The arterial baroreflex (ABR) performs an important role in regulating blood pressure (BP) both at rest and during exercise, by carefully orchestrating autonomic neural activity to the heart and blood vessels. Reduced ABR sensitivity (i.e., gain) has been associated with increased cardiovascular risk, cardiac electrical instability and orthostatic intolerance, while 'normal' ABR function during exercise is important for ensuring an appropriate cardiovascular response is elicited. Previous studies examining the influence of age and sex on resting ABR function in humans have primarily used pharmacological methods (e.g., modified Oxford technique) to change BP and alter baroreceptor input. ⋯ Whether these findings can be extrapolated to young women or older men and women remains unclear. Recently the potential for age and sex to modulate the integrative neural control of the cardiovascular system is becoming appreciated. This review article will provide a detailed update of such recent advances into our understanding of the effects of age and sex on ABR control of BP both at rest and during dynamic exercise in humans.
-
Gestational hypothyroidism is a prevalent disorder in pregnant women. We aimed to investigate the impact of experimental gestational hypothyroidism (EGH) on cardiovascular and autonomic nervous systems (ANS) in the offspring of rats. EGH was induced with methimazole (MMI) 0.02% in drinking water from day 9 of gestation until birth. ⋯ After spectral analysis of PI and SAP, only LF band of SAP spectrum was higher (7.2 ± 0.8 vs 4.0 ± 0.6 mmHg(2), p<0.01) in OMTD under spontaneous condition. Despite bradycardia, EGH promotes spontaneous hypertension in 60 day old offspring, probably due to increased sympathetic modulation of vessels, which is suggested by the higher LF of SAP. These findings suggest a critical role of maternal THs in the development of fetal cardiovascular and autonomic nervous systems.