Neurotoxicity research
-
Neurotoxicity research · Feb 2011
Comparative StudyPalmitoylethanolamide protects dentate gyrus granule cells via peroxisome proliferator-activated receptor-α.
Endocannabinoids like 2-arachidonoylglycerol strongly modulate the complex machinery of secondary neuronal damage and are shown to improve neuronal survival after excitotoxic lesion. Palmitoylethanolamide (PEA), the naturally occurring fatty acid amide of ethanolamine and palmitic acid, is an endogenous lipid known to mimic several effects of endocannabinoids even without binding to cannabinoid receptors. Here we show that PEA (0.001-1 μM) and the synthetic peroxisome proliferator-activated receptor (PPAR)-alpha agonist 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643; 0.1-1 μM) reduced the number of microglial cells and protected dentate gyrus granule cells in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). ⋯ Intensity and location of PPAR-alpha immunoreaction remained constant during stimulation with PEA (0.01 μM; 1-36 h). In conclusion our data provide evidence that (1) PEA counteracted excitotoxically induced secondary neuronal damage of dentate gyrus granule cells, (2) PPAR-alpha but not PPAR-gamma is the endogenous binding site for PEA-mediated neuroprotection, and (3) PEA may activate PPAR-alpha in microglial cells and hippocampal neurons to exert its neuroprotective effects. In addition to classical endocannabinoids, PEA-mediated PPAR-alpha activation represents a possible target for therapeutic interventions to mitigate symptoms of secondary neuronal damage.
-
Neurotoxicity research · May 2010
Glutamate carboxypeptidase inhibition reduces the severity of chemotherapy-induced peripheral neurotoxicity in rat.
Chemotherapy is the most common method to treat cancer. The use of certain antineoplastic drugs, however, is associated with the development of peripheral neuropathy that can be dose-limiting. Excitotoxic glutamate release, leading to excessive glutamatergic neurotransmission and activation of N-methyl-D-aspartate (NMDA) receptors, is associated with neuronal damage and death in several nervous system disorders. ⋯ In all cases, glutamate carboxypeptidase inhibition significantly improved the chemotherapy-induced nerve conduction velocity deficits. In addition, morphological and morphometrical alterations induced by cisplatin and bortezomib in dorsal root ganglia (DRG) were improved by glutamate carboxypeptidase inhibition. Our data support a novel approach for the treatment of chemotherapy-induced peripheral neuropathy.
-
Neurotoxicity research · Apr 2010
Increased hippocampal expression of the divalent metal transporter 1 (DMT1) mRNA variants 1B and +IRE and DMT1 protein after NMDA-receptor stimulation or spatial memory training.
Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. ⋯ NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.
-
Neurotoxicity research · Feb 2010
General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats.
Common general anesthetics administered to young rats at the peak of brain development cause widespread apoptotic neurodegeneration in their immature brain. Behavioral studies have shown that this leads to learning and memory deficiencies later in life. The subiculum, a part of the hippocampus proper and Papez's circuit, is involved in cognitive development and is vulnerable to anesthesia-induced developmental neurodegeneration. ⋯ We found that this anesthesia, when administered at the peak of synaptogenesis, causes long-lasting injury to the subicular neuropil. This is manifested as neuropil scarcity and disarray, morphological changes indicative of mitochondria degeneration, a decrease in the number of neuronal profiles with multiple synaptic boutons and significant decreases in synapse volumetric densities. We believe that observed morphological disturbances of developing synapses may, at least in part, contribute to the learning and memory deficits that occur later in life after exposure of the immature brain to general anesthesia.
-
Neurotoxicity research · Feb 2010
Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease: involvement of alpha-synuclein.
Valproic acid (VPA), an established antiepileptic and antimanic drug, has recently emerged as a promising neuroprotective agent. Among its many cellular targets, VPA has been recently demonstrated to be an effective inhibitor of histone deacetylases. Accordingly, we have adopted a schedule of dietary administration (2% VPA added to the chow) that results in a significant inhibition of histone deacetylase activity and in an increase of histone H3 acetylation in brain tissues of 4 weeks-treated rats. ⋯ Furthermore, monoubiquitinated alpha-synuclein increased its localization in nuclei isolated from substantia nigra of rotenone-treated rats, an effect also prevented by VPA treatment. Nuclear localization of alpha-synuclein has been recently described in some models of PD and its neurodegenerative effect has been ascribed to histone acetylation inhibition. Thus, the ability of VPA to increase histone acetylation is a novel candidate mechanism for its neuroprotective action.