Nature communications
-
Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim(-/-) mice challenged with LPS, bleomycin and asbestos. ⋯ Furthermore, decreased active caspase-1 and IL-1β levels are observed in vitro in Vim(-/-) and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests that vimentin may be a key regulator of the NLRP3 inflammasome.
-
Nature communications · Jan 2015
Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy.
Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. ⋯ Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity.
-
Nature communications · Jan 2015
Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.
Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. ⋯ Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders.
-
Nature communications · Jan 2015
Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes.
Neutrophil recruitment to the site of injury is an essential first step of an anti-bacterial response. However, little is known about the basis for and relevance of neutrophil migration from inflamed tissue into lymphoid organs. We established a photoconversion-based system to monitor the fate of neutrophils recruited to inflamed skin. ⋯ Neutrophils are the predominant immune cell to migrate from inflamed skin into lymph nodes where they augment lymphocyte proliferation. Furthermore, inhibition of neutrophil migration from skin reduces T-cell proliferation in draining lymph nodes. Thus neutrophils mediate rapid cellular communication between the initial injury site and secondary lymphoid organs and modulate immune responsiveness.
-
Nature communications · Jan 2015
Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant.
Gain-of-function mutations in the human SCN11A-encoded voltage-gated Na(+) channel NaV1.9 cause severe pain disorders ranging from neuropathic pain to congenital pain insensitivity. However, the entire spectrum of the NaV1.9 diseases has yet to be defined. Applying whole-exome sequencing we here identify a missense change (p. ⋯ V1184A shifts the voltage dependence of channel opening to hyperpolarized potentials thereby conferring gain-of-function characteristics to NaV1.9. Mutated channels diminish the resting membrane potential of mouse primary sensory neurons and cause cold-resistant hyperexcitability of nociceptors, suggesting a mechanistic basis for the temperature dependence of the pain phenotype. On the basis of direct comparison of the mutations linked to either cold-aggravated pain or pain insensitivity, we propose a model in which the physiological consequence of a mutation, that is, augmented versus absent pain, is critically dependent on the type of NaV1.9 hyperactivity.