The journal of headache and pain
-
Migraine is a neurological disorder characterized by intense, debilitating headaches, often coupled with nausea, vomiting and sensitivity to light and sound. Whilst changes in sensory processes during a migraine attack have been well-described, there is growing evidence that even between migraine attacks, sensory abilities are disrupted in migraine. Brain imaging studies have investigated altered coupling between areas of the descending pain modulatory pathway but coupling between somatosensory processing regions between migraine attacks has not been properly studied. The aim of this study was to determine if ongoing functional connectivity between visual, auditory, olfactory, gustatory and somatosensory cortices are altered during the interictal phase of migraine. ⋯ These data provide evidence for a dysfunctional sensory network in pain-free migraine patients which may be underlying altered sensory processing between migraine attacks.
-
Migraine is a common brain disorder that predominantly affects women. Migraine pain seems mediated by the activation of mechanosensitive channels in meningeal afferents. Given the role of transient receptor potential melastatin 3 (TRPM3) channels in mechanical activation, as well as hormonal regulation, these channels may play a role in the sex difference in migraine. Therefore, we investigated whether nociceptive firing induced by TRPM3 channel agonists in meningeal afferents was different between male and female mice. In addition, we assessed the relative contribution of mechanosensitive TRPM3 channels and that of mechanosensitive Piezo1 channels and transient receptor potential vanilloid 1 (TRPV1) channels to nociceptive firing relevant to migraine in both sexes. ⋯ Together, we revealed a specific mechanosensitive profile of nociceptive firing in females and suggest TRPM3 channels as a potential novel candidate for the generation of migraine pain, with particular relevance to females.
-
Several inflammatory and vascular molecules, and neurotrophins have been suggested to have a possible role in the development of migraine. However, pathophysiological events leading to migraine onset and transformation of episodic migraine (EM) to chronic migraine (CM) are not fully understood. Thus, we aimed to assess peripheral levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and prostaglandin E2 (PGE2) in EM and CM patients, and controls. ⋯ Our findings suggest that NGF, BDNF, PGE2, and VEGF may play a significant role in migraine pathogenesis and/or chronification, and therefore might bear potential value for novel targeted abortive and prophylactic migraine therapy. Further prospective cohort studies with larger sample sizes can more robustly evaluate the implications of these findings.
-
Neurological symptoms are frequent among patients with COVID-19. Little is known regarding the repercussions of neurological symptoms for patients and how these symptoms are related to one another. ⋯ Headache is frequent in COVID-19, is associated with other symptoms such as fever, sore throat, anosmia, ageusia, and myalgia, and may persist beyond the acute phase of the disease.
-
Chronic migraine places a disabling burden on patients, which is extensively modeled by the nitroglycerin (NTG)-treated animal model. Although the NF-κB pathway is involved in an increase in CGRP levels and activation of the trigeminal system in the NTG model, the relationship between NTG and neuroinflammation remains unclear. This study aimed to optimize a chronic NTG rat model with hyperalgesia and the ethological capacity for estimating migraine therapies and to further explore the underlying mechanism of NTG-induced migraine. ⋯ This study confirmed that NTG (10 mg/kg, s.c., every 2 d for a total of 5 injections) was the optimal condition to provoke migraine, resulting in mechanical hyperalgesia and observable migraine-like behavior. Furthermore, IL-17A crossed the blood-brain barrier into the medulla oblongata, triggering TNC activation through microglia-mediated neuroinflammation. This process was a novel mechanism in NTG-induced chronic migraine, suggesting that IL-17A might be a novel target in the treatment of migraine.