The journal of headache and pain
-
Neurovascular contact (NVC) is the main cause of primary trigeminal neuralgia (PTN); however, cases of PTN without NVC are still observed. In this study, the Meckel cave (MC) morphology in PTN were analyzed by radiomics and compared to healthy controls (HCs) to explore the cause of PTN. ⋯ By providing a method to analyze the morphology of the MC, we found that there is an asymmetry in the morphology of bilateral MC in the PTN and HC groups. It can be inferred that the flatness of the MC may be a cause of PTN.
-
While pain freedom at 2 h is a key primary outcome for current trials for acute treatment of migraine, the relationship between the degree of head pain and other efficacy measures at 2 h has rarely been explored. Following lasmiditan treatment of a migraine attack with moderate or severe head pain, we contrast those who achieve pain freedom with those who achieve mild pain but not pain freedom 2 h post dosing. ⋯ This study demonstrated that, at 2 h post treatment, patients who were pain free were more likely to achieve other outcomes including freedom from their MBS, freedom from migraine-related functional disability, and improved PGIC compared to those with mild pain, confirming that 2 h pain freedom is more robustly associated with other clinical outcomes than the 2 h mild pain endpoint.
-
In the past decades a plethora of studies has been conducted to explore resting-state functional connectivity (RS-FC) of the brain networks in migraine with conflicting results probably due to the variability and susceptibility of signal fluctuations across the course of RS-FC scan. On the other hand, the structural substrates enabling the functional communications among the brain connectome, characterized by higher stability and reproducibility, have not been widely investigated in migraine by means of graph analysis approach. We hypothesize a rearrangement of the brain connectome with an increase of both strength and density of connections between cortical areas specifically involved in pain perception, processing and modulation in migraine patients. Moreover, such connectome rearrangement, inducing an imbalance between the competing parameters of network efficiency and segregation, may underpin a mismatch between energy resources and demand representing the neuronal correlate of the energetically dysfunctional migraine brain. ⋯ The imbalance between the need of investing resources to promote network efficiency and the need of minimizing the metabolic cost of wiring probably represents the mechanism underlying migraine patients' susceptibility to triggers. Such changes in connectome topography suggest an intriguing pathophysiological model of migraine as brain "connectopathy".