The journal of headache and pain
-
Spin-tag perfusion imaging is an MRI method that quantitatively measures cerebral blood flow. Compared with conventional perfusion techniques, advantages of this arterial spin-labeling (ASL) include repeatability and the avoidance of intravenous contrast administration. In the present study, we performed an analysis of 3T high-field MRI examinations utilizing ASL perfusion during migraine attacks. ⋯ Normalized ASL images acquired during migraine attack showed significant relative hypoperfusion in the bilateral median thalamic areas including hypothalamus and significant relative hyperperfusion in the frontal cortex compared to images acquired during the migraine-free state. When normalized ASL images acquired 30 min after treatment were compared with those acquired during the attack, relative improvement of perfusion in the bilateral median thalamic areas including hypothalamus was observed. Hypothalamus and its surrounding areas may participate in the pathogenesis in migraine attack.
-
In patients with migraine, the various sensory stimulation modalities, including visual stimuli, invariably fail to elicit the normal response habituation. Whether this lack of habituation depends on abnormal activity in the sub-cortical structures responsible for processing incoming information as well as nociception and antinociception or on abnormal cortical excitability per se remains debateable. To find out whether inducing tonic pain in the hand by cold pressure test (CPT) alters the lack of visual-evoked potential (VEP) habituation in migraineurs without aura studied between attacks we recorded VEPs in 19 healthy subjects and in 12 migraine patients during four experimental conditions: baseline; no-pain (hand held in warm water, 25 degrees C); pain (hand held in cold water, 2-4 degrees C); and after-effects. ⋯ These findings suggest that the interictal cortical dysfunction induced by migraine prevents the cortical changes induced by tonic painful stimulation both during pain and after pain ends. Because such cortical changes presumably reflect plasticity mechanisms in the stimulated cortex, our study suggests altered plasticity of sensory cortices in migraine. Whether this abnormality reflects abnormal functional activity in the subcortical structures subserving tonic pain activation remains conjectural.
-
Primary stabbing headache (PSH) is a short-lasting but troublesome headache disorder, which has been known for several decades. The head pain occurs as a single stab or as a series of stabs generally involving the area supplied by the first division of trigeminal nerve. Stabs last for approximately a few seconds, occurring and recurring from once to multiple times per day in an irregular pattern. ⋯ Indomethacin represents the principal option in the treatment of PSH, despite therapeutic failure in up to 35% of the cases. Recent reports showed that cyclooxygenase-2 (COX-2) inhibitors, gabapentin, nifedipine, paracetamol and melatonin may also be effective. In this report, we focus on the therapy of PSH summarizing the information collected from a systematic analysis of the international literature over the period 1980-2009.
-
It has been hypothesized that abnormalities of information processing in migraine may be attributed to impairment of cerebral maturation. However, the most evidences for this hypothesis have come from cross-sectional studies during childhood. We performed a longitudinal study and recorded contingent negative variation (CNV), an event-related slow cortical potential, in migraine children (n = 27) and age-matched healthy individuals (n = 23) in 1998 and 8 years later (2006). ⋯ However, the reduction of the iCNV amplitude was more pronounced in migraine patients who were in remission in 2006 and in healthy subjects and less pronounced in migraineurs with persisting headaches. Patients with the worsened migraine demonstrated the most pronounced loss of iCNV habituation in 1998 and significantly increased iCNV amplitudes in 2006. This longitudinal study supports the hypothesis of impaired cerebral maturation in migraine and shows that migraine manifestation is a key factor interfering with the natural maturation process of central information processing.