Cardiorenal medicine
-
Cardiorenal medicine · Apr 2015
Association between Platelet-to-Lymphocyte Ratio and Contrast-Induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndrome.
Contrast-induced nephropathy (CIN) is associated with significantly increased morbidity and mortality after percutaneous coronary intervention (PCI). Patients with acute coronary syndrome (ACS) are at higher risk of CIN. The platelet-to-lymphocyte ratio (PLR) is closely linked to inflammatory conditions. We hypothesized that PLR levels on admission can predict the development of CIN after PCI for ACS. ⋯ The admission PLR level is an independent predictor of the development of CIN after PCI in ACS.
-
Cardiorenal medicine · Dec 2014
ReviewManagement of the cardiorenal syndrome in decompensated heart failure.
The management of the cardiorenal syndrome (CRS) in decompensated heart failure (HF) is challenging, with high-quality evidence lacking. ⋯ Congestion, defined as elevated cardiac filling pressures, is not a surrogate for volume overload. Transient decreases in GFR might be accepted during decongestion, but hypotension must be avoided. Paracentesis and compression therapy are essential to remove fluid overload from third spaces. Increasing the effective circulatory volume improves renal function when cardiac output is depressed. As mechanical support is invasive and inotropes are related to increased mortality, afterload reduction through vasodilator therapy remains the preferred strategy in patients who are normo- or hypertensive. Specific therapies to augment renal perfusion (rolofylline, dopamine or nesiritide) have rendered disappointing results, but recently, serelaxin has been shown to improve renal function, even with a trend towards reduced all-cause mortality in selected patients. Diuretic resistance is associated with worse outcomes, independent of the underlying GFR. Combinational diuretic therapy, with ultrafiltration as a bail-out strategy, is indicated in case of diuretic resistance.
-
Cardiorenal medicine · Aug 2014
ReviewThe hemodynamic and nonhemodynamic crosstalk in cardiorenal syndrome type 1.
The organ crosstalk can be defined as the complex biological communication and feedback between distant organs mediated via cellular, molecular, neural, endocrine and paracrine factors. In the normal state, this crosstalk helps to maintain homeostasis and optimal functioning of the human body. However, during disease states this very crosstalk can carry over the influence of the diseased organ to initiate and perpetuate structural and functional dysfunction in the other organs. ⋯ This clinical condition requires a more complex management given its more complicated hospital course and higher mortality. A lot of research has emerged in the last years trying to explain the pathophysiology of CRS type 1 which remains in part poorly understood. This review primarily focuses on the hemodynamic and nonhemodynamic mechanisms involved in this syndrome.
-
Intraoperative hemolysis and inflammation are associated with acute kidney injury (AKI) following cardiac surgery. Plasma-free hemoglobin induces heme oxygenase-1 (HO-1) expression. HO-1 degrades heme but increases in experimental models of AKI. This study tested the hypothesis that plasma HO-1 concentrations are associated with intraoperative hemolysis and are increased in patients that develop AKI following cardiac surgery. ⋯ Plasma HO-1 is increased in patients that develop AKI, and CPB duration, hemolysis, and inflammation are associated with increased HO-1 concentrations following cardiac surgery. Strategies that alter hemolysis and HO-1 expression during cardiac surgery may affect risk for AKI.
-
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious postoperative complication of cardiac surgery requiring cardiopulmonary bypass (CPB), and it is the second most common cause of AKI in the intensive care unit. Although the complication has been associated with the use of CPB, the etiology is likely multifactorial and related to intraoperative and early postoperative management including pharmacologic therapy. To date, very little evidence from randomized trials supporting specific interventions to protect from or prevent AKI in broad cardiac surgery populations has been found. ⋯ Further studies are needed to determine how to optimize cardiac surgical procedures, CPB parameters, and intraoperative and early postoperative blood pressure and renal blood flow to reduce the risk of CSA-AKI. No pharmacologic strategy has demonstrated clear efficacy in the prevention of CSA-AKI; however, some agents, such as the natriuretic peptide nesiritide and the dopamine agonist fenoldopam, have shown promising results in renoprotection. It remains unclear whether CSA-AKI patients can benefit from the early institution of such pharmacologic agents or the early initiation of renal replacement therapy.