Journal of medical Internet research
-
J. Med. Internet Res. · Dec 2020
Dynamic Public Health Surveillance to Track and Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study.
The emergence of SARS-CoV-2, the virus that causes COVID-19, has led to a global pandemic. The United States has been severely affected, accounting for the most COVID-19 cases and deaths worldwide. Without a coordinated national public health plan informed by surveillance with actionable metrics, the United States has been ineffective at preventing and mitigating the escalating COVID-19 pandemic. Existing surveillance has incomplete ascertainment and is limited by the use of standard surveillance metrics. Although many COVID-19 data sources track infection rates, informing prevention requires capturing the relevant dynamics of the pandemic. ⋯ Standard surveillance techniques such as daily and cumulative infections and deaths are helpful but only provide a static view of what has already occurred in the pandemic and are less helpful in prevention. Public health policy that is informed by dynamic surveillance can shift the country from reacting to COVID-19 transmissions to being proactive and taking corrective action when indicators of speed, acceleration, jerk, and persistence remain positive week over week. Implicit within our dynamic surveillance is an early warning system that indicates when there is problematic growth in COVID-19 transmissions as well as signals when growth will become explosive without action. A public health approach that focuses on prevention can prevent major outbreaks in addition to endorsing effective public health policies. Moreover, subnational analyses on the dynamics of the pandemic allow us to zero in on where transmissions are increasing, meaning corrective action can be applied with precision in problematic areas. Dynamic public health surveillance can inform specific geographies where quarantines are necessary while preserving the economy in other US areas.
-
J. Med. Internet Res. · Dec 2020
COVID-19 Contact-Tracing Apps: Analysis of the Readability of Privacy Policies.
Apps that enable contact-tracing are instrumental in mitigating the transmission of COVID-19, but there have been concerns among users about the data collected by these apps and their management. Contact tracing is of paramount importance when dealing with a pandemic, as it allows for rapid identification of cases based on the information collected from infected individuals about other individuals they may have had recent contact with. Advances in digital technology have enabled devices such as mobile phones to be used in the contract-tracing process. ⋯ The contents of the privacy policies of these apps were assessed for readability using Readability Test Tool, a free web-based reliability calculator, which computes scores based on a number of statistics (ie, word count and the number of complex words) and indices (ie, Flesch Reading Ease, Flesch-Kincaid Reading Grade Level, Gunning Fog Index, and Simplified Measure of Gobbledygook index). Our analysis revealed that explanations used in the privacy policies of these apps require a reading grade between 7 and 14, which is considerably higher than the reading ability of the average individual. We believe that improving the readability of privacy policies of apps could be potentially reassuring for users and may help facilitate the increased use of such apps.
-
J. Med. Internet Res. · Dec 2020
Tweets by People With Arthritis During the COVID-19 Pandemic: Content and Sentiment Analysis.
Emerging evidence suggests that people with arthritis are reporting increased physical pain and psychological distress during the COVID-19 pandemic. At the same time, Twitter's daily usage has surged by 23% throughout the pandemic period, presenting a unique opportunity to assess the content and sentiment of tweets. Individuals with arthritis use Twitter to communicate with peers, and to receive up-to-date information from health professionals and services about novel therapies and management techniques. ⋯ Tweets by people with arthritis highlight the multitude of concurrent concerns during the COVID-19 pandemic. Understanding these concerns, which include heightened physical and psychological symptoms in the context of treatment misinformation, may assist clinicians to provide person-centered care during this time of great health uncertainty.
-
J. Med. Internet Res. · Dec 2020
Mental Health Burden in Different Professions During the Final Stage of the COVID-19 Lockdown in China: Cross-sectional Survey Study.
COVID-19 resulted in considerable mental health burden in the Chinese general population and among health care workers at the beginning and peak of the pandemic. However, little is known about potentially vulnerable groups during the final stage of the lockdown. ⋯ By the end of the lockdown, a considerable part of the Chinese population showed increased levels of depression and anxiety. Students and other medical staff were the most affected, while economy staff were highly stressed. Doctors and nurses need support regarding potential anxiety disorders. Future work should focus on longitudinal results of the pandemic and develop targeted preventive measures.
-
J. Med. Internet Res. · Dec 2020
Multicenter StudyDevelopment and External Validation of a Machine Learning Tool to Rule Out COVID-19 Among Adults in the Emergency Department Using Routine Blood Tests: A Large, Multicenter, Real-World Study.
Conventional diagnosis of COVID-19 with reverse transcription polymerase chain reaction (RT-PCR) testing (hereafter, PCR) is associated with prolonged time to diagnosis and significant costs to run the test. The SARS-CoV-2 virus might lead to characteristic patterns in the results of widely available, routine blood tests that could be identified with machine learning methodologies. Machine learning modalities integrating findings from these common laboratory test results might accelerate ruling out COVID-19 in emergency department patients. ⋯ A machine learning model developed with multicenter clinical data integrating commonly collected ED laboratory data demonstrated high rule-out accuracy for COVID-19 status, and might inform selective use of PCR-based testing.