Infectious diseases of poverty
-
During the last 30 years, the development of geographical information systems and satellites for Earth observation has made important progress in the monitoring of the weather, climate, environmental and anthropogenic factors that influence the reduction or the reemergence of vector-borne diseases. Analyses resulting from the combination of geographical information systems (GIS) and remote sensing have improved knowledge of climatic, environmental, and biodiversity factors influencing vector-borne diseases (VBDs) such as malaria, visceral leishmaniasis, dengue, Rift Valley fever, schistosomiasis, Chagas disease and leptospirosis. These knowledge and products developed using remotely sensed data helped and continue to help decision makers to better allocate limited resources in the fight against VBDs. ⋯ The tools presented in this article have been successfully used by the projects under the WHO/TDR-IDRC Research Initiative on VBDs and Climate Change. Combined with capacity building, they are an important piece of work which can significantly contribute to the goals of WHO Global Vector Control Response and to the Sustainable Development Goals especially those on health and climate action.
-
West African countries Liberia, Sierra Leone, and Guinea experienced the largest and longest epidemic of Ebola virus disease from 2014 to 2016; after the epidemic was declared to be over, Liberia, Guinea, and Sierra Leone still experienced Ebola cases/clusters. The United States Centers for Disease Control and Prevention (US CDC) participated in the response efforts to the latter Ebola clusters, by assisting with case investigation, contact identification, and monitoring. This study aims to estimate the cost to the US CDC of responding to three different Ebola clusters after the end of the Ebola epidemic in 2015: i) Sierra Leone, Tonkolili (Jan 2016, 2 Ebola cases, 5 affected regions); ii) Guinea, Nzerekore (Mar-May 2016, 10 Ebola cases, 2 affected regions); iii) Liberia, Somali Drive (Mar 2016, 3 Ebola cases, 1 affected region). ⋯ Costs vary with the characteristics of each cluster, with those spanning more regions and cases requiring more resources for case investigation and contact identification and monitoring. These data will assist policy makers plan for similar post-epidemic responses.
-
Health care workers are at the frontline in the fight against infectious disease, and as a result are at a high risk of infection. During the 2014-2015 Ebola outbreak in West Africa, many health care workers contracted Ebola, some fatally. However, no members of the Chinese Anti-Ebola medical team, deployed to provide vital medical care in Liberia were infected. This study aims to understand how this zero infection rate was achieved. ⋯ The comprehensive and multidisciplinary measures employed to protect the health of the medical team proved successful even in Liberia's resource-limited setting. The global health community can learn valuable lessons from this experience which could improve the safety of health care workers in future emergencies. These lessons include: establishing capable command systems; implementing effective coordination mechanisms; providing adequate equipment; providing training for medical teams; investing in the development of global health professionals; and improving research on ways to protect health care workers.
-
A high prevalence of epilepsy has been observed in many onchocerciasis endemic regions. This study is to estimate the prevalence of active epilepsy and exposure to Onchocerca volvulus infection in a rural population in Ituri province, Democratic Republic of Congo. ⋯ A high prevalence of epilepsy and a significant association between epilepsy and exposure to O. volvulus were observed in the population in Ituri province, Democratic Republic of Congo. There is an urgent need to implement a CDTI programme and to scale up an epilepsy treatment and care programme.
-
Echinococcus multilocularis causes alveolar echinococcosis (AE) and is widely prevalent in Qinghai Province, China, where a number of different species have been identified as hosts. However, limited information is available on the Qinghai vole (Lasiopodomys fuscus), which is hyper endemic to Qinghai Province and may represent a potential intermediate host of E. multilocularis. Thus, L. fuscus could contribute to the endemicity of AE in the area. ⋯ L. fuscus can be infected with E. multilocularis and plays a potential role in the life cycle and epidemiology of E. multilocularis in the Qinghai-Tibetan Plateau of China.