Intensive care medicine experimental
-
Intensive Care Med Exp · Dec 2016
Effects of N-acetylcysteine (NAC) supplementation in resuscitation fluids on renal microcirculatory oxygenation, inflammation, and function in a rat model of endotoxemia.
Modulation of inflammation and oxidative stress appears to limit sepsis-induced damage in experimental models. The kidney is one of the most sensitive organs to injury during septic shock. In this study, we evaluated the effect of N-acetylcysteine (NAC) administration in conjunction with fluid resuscitation on renal oxygenation and function. We hypothesized that reducing inflammation would improve the microcirculatory oxygenation in the kidney and limit the onset of acute kidney injury (AKI). ⋯ The addition of NAC to fluid resuscitation may improve renal oxygenation and attenuate microvascular dysfunction and AKI. Decreases in renal NO and hyaluronic acid levels may be involved in this beneficial effect. A therapeutic strategy combining initial fluid resuscitation with antioxidant therapies may prevent sepsis-induced AKI.
-
Intensive Care Med Exp · Dec 2016
Microcirculatory perfusion shows wide inter-individual variation and is important in determining shock reversal during resuscitation in a porcine experimental model of complex traumatic hemorrhagic shock.
Traumatic hemorrhagic shock (THS) is a leading cause of preventable death following severe traumatic injury. Resuscitation of THS is typically targeted at blood pressure, but the effects of such a strategy on systemic and microcirculatory flow remains unclear. Failure to restore microcirculatory perfusion has been shown to lead to poor outcomes in experimental and clinical studies. Systemic and microcirculatory variables were examined in a porcine model of complex THS, in order to investigate inter-individual variations in flow and the effect of microcirculatory perfusion on reversal of the shock state. ⋯ There was a wide variation in both macro- and microcirculatory flow variables in this pressure-targeted experimental model of THS resuscitation. Early changes in microvascular perfusion appear to be key determinants in the reversal of the shock state during resuscitation. Microcirculatory flow parameters may be more reliable markers of physiological insult than pressure-based parameters and are potential targets for goal-directed resuscitation.
-
Intensive Care Med Exp · Dec 2016
A technique for continuous bedside monitoring of global cerebral energy state.
Cerebral cytoplasmatic redox state is a sensitive indicator of cerebral oxidative metabolism and is conventionally evaluated from the extracellular lactate/pyruvate (LP) ratio. In the present experimental study of global cerebral ischemia induced by hemorrhagic shock, we investigate whether the LP ratio obtained from microdialysis of cerebral venous blood may be used as a surrogate marker of global cerebral energy state. ⋯ During cerebral ischemia induced by severe hemorrhagic shock, intravascular microdialysis of the draining venous blood will exhibit changes of the LP ratio revealing the deterioration of global cerebral oxidative energy metabolism. In neurocritical care, this technique might be used to give information regarding global cerebral energy metabolism in addition to the regional information obtained from intracerebral microdialysis catheters. The technique might also be used to evaluate cerebral energy state in various critical care conditions when insertion of an intracerebral microdialysis catheter may be contraindicated, e.g., resuscitation after cardiac standstill, open-heart surgery, and multi-trauma.
-
Intensive Care Med Exp · Dec 2016
Comparison of an automatic analysis and a manual analysis of conjunctival microcirculation in a sheep model of haemorrhagic shock.
Life-threatening diseases of critically ill patients are known to derange microcirculation. Automatic analysis of microcirculation would provide a bedside diagnostic tool for microcirculatory disorders and allow immediate therapeutic decisions based upon microcirculation analysis. ⋯ As characteristic changes in microcirculation during ovine haemorrhagic shock were not detected by automatic analysis and correlation between automatic and manual analyses (current gold standard) was poor, the use of the investigated software for automatic analysis of microcirculation cannot be recommended in its current version at least in the investigated model. Further improvements in automatic vessel detection are needed before its routine use.
-
Intensive Care Med Exp · Dec 2016
Effects of fresh frozen plasma, Ringer's acetate and albumin on plasma volume and on circulating glycocalyx components following haemorrhagic shock in rats.
Early use of fresh frozen plasma (FFP) in haemorrhagic shock is associated with improved outcome. This effect may partly be due to protection of the endothelial glycocalyx and/or secondary to a superior efficacy of FFP as a plasma volume expander compared to crystalloids. The objective of the present study was to investigate if protection of the glycocalyx by FFP can be demonstrated when potential differences in plasma volume (PV) following resuscitation are accounted for. ⋯ Improved outcome in trauma by FFP could in part be explained by better plasma volume expansion compared to crystalloids. The decrease in plasma concentration of markers of glycocalyx degradation after resuscitation with FFP are largely secondary to differences in plasma volume and may not accurately reflect effects of FFP on the glycocalyx.