Intensive care medicine experimental
-
Intensive Care Med Exp · Dec 2016
Comparison between pressure-recording analytical method (PRAM) and femoral arterial thermodilution method (FATD) cardiac output monitoring in an infant animal model of cardiac arrest.
The pressure-recording analytical method is a new semi-invasive method for cardiac output measurement (PRAM). There are no studies comparing this technique with femoral artery thermodilution (FATD) in an infant animal model. ⋯ No correlation nor concordance between both methods was observed. Limits of agreement and percentage of error were high and clinically not acceptable. No concurrence between both methods in CI changes was observed. PRAM is not a useful method for measurement of the CI in this pediatric model of cardiac arrest.
-
Intensive Care Med Exp · Dec 2016
Kinetics of arterial carbon dioxide during veno-venous extracorporeal membrane oxygenation support in an apnoeic porcine model.
Extracorporeal membrane oxygenation (ECMO) is a technique widely used worldwide to improve gas exchange. Changes in ECMO settings affect both oxygen and carbon dioxide. The impact on oxygenation can be followed closely by continuous pulse oximeter. Conversely, carbon dioxide equilibrates much slower and is not usually monitored directly. ⋯ Fifty minutes was enough to reach the equilibrium of PaCO2 after ECMO initiation or after changes in blood and sweep gas flow with an ECMO blood flow of 3500 ml/min. Longer periods may be necessary with lower ECMO blood flows.
-
Intensive Care Med Exp · Dec 2016
EditorialLung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI).
It was recently shown that acute respiratory distress syndrome (ARDS) mortality has not been reduced in over 15 years and remains ~40 %, even with protective low tidal volume (LVt) ventilation. Thus, there is a critical need to develop novel ventilation strategies that will protect the lung and reduce ARDS mortality. Protti et al. have begun to analyze the impact of mechanical ventilation on lung tissue using engineering methods in normal pigs ventilated for 54 h. ⋯ If the lung is fully inflated, a large Vt is not necessarily injurious. In conclusion, using engineering concepts to analyze the impact of the mechanical breath on the lung is a novel new approach to investigate VILI mechanisms and to help design the optimally protective breath. Data generated using these methods have challenged some of the current dogma surrounding the mechanisms of VILI and of the components in the mechanical breath necessary for lung protection.
-
Elevated plasma levels of heparin-binding protein (HBP) are associated with risk of organ dysfunction and mortality in sepsis, but little is known about causality and mechanisms of action of HBP. The objective of the present study was to test the hypothesis that HBP is a key mediator of the increased endothelial permeability observed in sepsis and to test potential treatments that inhibit HBP-induced increases in permeability. ⋯ HBP is a potential mediator of sepsis-induced acute lung injury through enhanced endothelial permeability. HBP increases permeability through an interaction with luminal GAGs and activation of the PKC and Rho-kinase pathways. Heparins are potential inhibitors of HBP-induced increases in permeability.
-
Intensive Care Med Exp · Dec 2016
Cross-species validation of cell cycle arrest markers for acute kidney injury in the rat during sepsis.
The recent discovery of cell cycle arrest biomarkers, tissue inhibitor of metalloproteinases (TIMP)-2 and insulin-like growth factor binding protein 7 (IGFBP7), has led to a newly available clinical test for acute kidney injury. The performance of these markers in preclinical studies has not been established. Therefore, we sought to evaluate the performance of TIMP-2 and IGFBP7 in rats undergoing cecal ligation and puncture. ⋯ In this experimental model of sepsis in the rat, cell cycle arrest biomarkers TIMP-2 and IGFBP7 are valid predictors of acute kidney injury.