Cancers
-
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. ⋯ The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
-
Most patients with biliary tract cancer (BTC) are diagnosed with advanced disease, relapse rates are high in those undergoing surgery and prognosis remains poor, while the incidence is increasing. Treatment options are limited, and chemotherapy is still the standard of care in both adjuvant and advanced disease setting. In recent years, different subtypes of BTC have been defined depending on the anatomical location and genetic and/or epigenetic aberrations. ⋯ The growing knowledge of BTC biology and molecular heterogeneity has paved the way for the development of new therapeutic approaches that will completely change the treatment paradigm for this disease in the near future. This review provides an overview of the molecular heterogeneity of BTC and summarizes new targets and emerging therapies in development. We also discuss resistance mechanisms, open issues, and future perspectives in the management of BTC.
-
The Vesical Imaging-Reporting and Data System (VI-RADS) has been introduced to provide preoperative bladder cancer staging and has proved to be reliable in assessing the presence of muscle invasion in the pre-TURBT (trans-urethral resection of bladder tumor). We aimed to assess through a systematic review and meta-analysis the inter-reader variability of VI-RADS criteria for discriminating non-muscle vs. muscle invasive bladder cancer (NMIBC, MIBC). PubMed, Web of Science, Cochrane, and Embase were searched up until 30 July 2020. ⋯ Heterogeneity was present among the studies (Q = 185.92, d.f. = 7, p < 0.001; I2 = 92.7%). Meta-regression analyses showed that the relative % of MIBC diagnosis and cumulative reader's experience to influence the estimated outcome (Coeff: 0.019, SE: 0.007; p= 0.003 and 0.036, SE: 0.009; p = 0.001). In the present study, we confirm excellent pooled inter-reader agreement of VI-RADS to discriminate NMIBC from MIBC underlying the importance that standardization and reproducibility of VI-RADS may confer to multiparametric magnetic resonance (mpMRI) for preoperative BCa staging.
-
Initiation and progression of cancer are under both genetic and epigenetic regulation. Epigenetic modifications including alterations in DNA methylation, RNA and histone modifications can lead to microRNA (miRNA) gene dysregulation and malignant cellular transformation and are hereditary and reversible. miRNAs are small non-coding RNAs which regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. miRNAs can target epigenetic modifier enzymes involved in epigenetic modulation, establishing a trilateral regulatory "epi-miR-epi" feedback circuit. ⋯ In addition, the application of bioinformatics tools to study these networks and the use of therapeutic miRNAs for the treatment of cancer are also reviewed. A comprehensive interpretation of these mechanisms and the interwoven bond between miRNAs and epigenetics is crucial for understanding how the human epigenome is maintained, how aberrant miRNA expression can contribute to tumorigenesis and how knowledge of these factors can be translated into diagnostic and therapeutic tool development.
-
Background: Prostate cancer (PCa) influences its surrounding habitat, which tends to manifest as different phenotypic appearances on magnetic resonance imaging (MRI). This region surrounding the PCa lesion, or the peri-tumoral region, may encode useful information that can complement intra-tumoral information to enable better risk stratification. Purpose: To evaluate the role of peri-tumoral radiomic features on bi-parametric MRI (T2-weighted and Diffusion-weighted) to distinguish PCa risk categories as defined by D'Amico Risk Classification System. ⋯ This combination improved the risk stratification results by 3-6% compared to intra-tumoral features alone. Our radiomics-based model resulted in a 53% accuracy in differentiating L-vs.-H compared to PI-RADS v2 (48%), on the validation set. Conclusion: Our findings suggest that peri-tumoral radiomic features derived from prostate bi-parametric MRI add independent predictive value to intra-tumoral radiomic features for PCa risk assessment.