EBioMedicine
-
Randomized Controlled Trial
Clinical Translation and Validation of a Predictive Biomarker for Patritumab, an Anti-human Epidermal Growth Factor Receptor 3 (HER3) Monoclonal Antibody, in Patients With Advanced Non-small Cell Lung Cancer.
During early clinical development, prospective identification of a predictive biomarker and validation of an assay method may not always be feasible. Dichotomizing a continuous biomarker measure to classify responders also leads to challenges. We present a case study of a prospective-retrospective approach for a continuous biomarker identified after patient enrollment but defined prospectively before the unblinding of data. An analysis of the strengths and weaknesses of this approach and the challenges encountered in its practical application are also provided. ⋯ NCT02134015.
-
The best investigational drug to treat cystic fibrosis (CF) patients with the most common CF-causing mutation (F508del) is VX-809 (lumacaftor) which recently succeeded in Phase III clinical trial in combination with ivacaftor. This corrector rescues F508del-CFTR from its abnormal intracellular localization to the cell surface, a traffic defect shared by all Class II CFTR mutants. Our goal here is to test the efficacy of lumacaftor in other Class II mutants in primary human bronchial epithelial (HBE) cells derived from CF patients. ⋯ CF patients with A561E (and likely also those with Y1029X) can potentially benefit from lumacaftor. Moreover, the methodology used here exemplifies how ex vivo approaches may apply personalized therapies to CF and possibly other respiratory diseases.
-
Sepsis involves aberrant immune responses to infection, but the exact nature of this immune dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed during late-stage sepsis. However, this relationship remains poorly characterised. Here we clarify the underlying mechanisms and timing of immune dysfunction in sepsis. ⋯ Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies and diagnostics for early sepsis.