EBioMedicine
-
Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed. The coronavirus spike (S) protein, a characteristic structural component of the viral envelope, is considered a key target for vaccines for the prevention of coronavirus infection. ⋯ MNA delivery of coronaviruses-S1 subunit vaccines is a promising immunization strategy against coronavirus infection. Progressive scientific and technological efforts enable quicker responses to emerging pandemics. Our ongoing efforts to develop MNA-MERS-S1 subunit vaccines enabled us to rapidly design and produce MNA SARS-CoV-2 subunit vaccines capable of inducing potent virus-specific antibody responses. Collectively, our results support the clinical development of MNA delivered recombinant protein subunit vaccines against SARS, MERS, COVID-19, and other emerging infectious diseases.
-
Some interstitial lung disease (ILD) patients develop a progressive fibrosing-ILD phenotype (PF-ILD), with similar persistent lung function decline suggesting common molecular pathways involved. Nintedanib, a tyrosine kinase inhibitor targeting the PDGF, FGF, VEGF and M-CSF pathways, has shown comparable efficacy in idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-associated ILD (SSc-ILD). We hypothesize that Nintedanib targeted molecular pathways will be augmented to a similar degree across PF-ILD regardless of aetiology. ⋯ Health Grant P01-HL108793 (JAB), South-Eastern Norway Regional Health Authority Grant 2018072 (AMHV).
-
Monoclonal antibodies (mAbs) targeting negative regulators, or checkpoint molecules (e.g. PD1/PD-L1 & CTLA4), of anti-tumoural T cells have demonstrated clinical efficacy in treating several neoplastic diseases. While many patients enjoy remarkable responses to checkpoint inhibitors, a majority show adverse effects. Understanding how checkpoint inhibitors may augment established chemotherapy or radiotherapy regimens or other immunotherapies like oncolytic viruses may lead to better clinical outcomes measured by improved efficacy with reduced toxicity. Here, we assess how Newcastle disease virus (NDV), an oncolytic virus in clinical testing, may interact with radiotherapy to enhance checkpoint inhibitor blockade. ⋯ The National Institutes of Health grant HHSN272201400008C supported the work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
-
The microbiome is increasingly recognized for its role in multiple aspects of cancer development and treatment, specifically in response to checkpoint inhibitors. While checkpoint inhibitors have revolutionized cancer treatment by producing durable anti-tumor responses, only a minority of patients respond to the available immunotherapy drugs and accurate, sensitive and specific microbiome predictors of response to treatment remain elusive. ⋯ Furthermore, we discuss the current evidence available from murine models seeking to explain the immunological mechanisms that may drive this process. While this work is promising in defining the impact of gut microbiota in cancer treatment, many unanswered questions indicate the need for additional human and experimental studies.