Experimental biology and medicine
-
Endothelin (ET)-1 evokes a burning pruritus sensation when injected intradermally in humans and nocifensive behavior when injected into the hind paw of rodents. Because pain and pruritus are clearly distinct nociceptive sensory modalities in humans, the current study evaluates the potential of ET-1 to elicit scratching behavior in mice. Mice received an intradermal injection of 1-30 pmol ET-1; 10 microg of the mast cell degranulator compound, 48/80; 100 nmol histamine; or vehicle into the scruff, and the number of scratching bouts displayed during the first 40 mins was recorded. ⋯ Responses to compound 48/80 or responsiveness of vehicle-treated mice were unaffected by these antagonists. Thus, ET-1 displays potent pruritic actions in the mouse mediated to a substantial extent via local ET(A) receptors. The findings with IRL-1620 and BQ-788 suggest that local ET(B) receptors exert an antipruritic role, but, for reasons still unknown, the results obtained using systemic A-192621 injection are at variance with this view.
-
Exp. Biol. Med. (Maywood) · Jun 2006
Endothelin-a receptor blockade does not debilitate the cardiovascular and hormonal adaptation to xenon or isoflurane anesthesia in dogs.
The objective of this study was to investigate whether circulatory and hormonal changes during xenon plus remifentanil or isoflurane plus remifentanil anesthesia are altered by endothelin-A (ET(A)) receptor blockade. Eight beagle dogs were studied in four protocols (n = 7 each). After a 30-min awake period, anesthesia was induced with 8 mg/kg propofol, administered intravenously (iv), and maintained with either 0.8% +/- 0.01% (vol/vol) isoflurane plus 0.5 microg/kg/min remifentanil (Protocol 1) or 63% +/- 1% (vol/vol) xenon plus 0.5 microg/kg/min remifentanil (Protocol 2) for 1 hr. ⋯ We conclude that the hemodynamic and hormonal adaptation after xenon plus remifentanil and isoflurane plus remifentanil anesthesia does not depend on the endothelin system, because it is unaffected by ET(A) receptor inhibition. Therefore, the use of Atrasentan does not impair cardiovascular stability during xenon- or isoflurane-based anesthesia in our dog model. However, the way anesthesia is performed is of crucial importance for hemodynamic and hormonal reactions observed during research in animals because the release of vasopressin and catecholamines may be intensified by xenon plus remifentanil anesthesia.
-
Exp. Biol. Med. (Maywood) · Jun 2006
Endothelin ET(B) receptor antagonist reduces mechanical allodynia in rats with trigeminal neuropathic pain.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. ⋯ Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.
-
Exp. Biol. Med. (Maywood) · Mar 2006
Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. ⋯ In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.
-
Exp. Biol. Med. (Maywood) · Sep 2005
ReviewMechanisms of oxygen demand/supply balance in the right ventricle.
Few studies have investigated factors responsible for the O2 demand/supply balance in the right ventricle. Resting right coronary blood flow is lower than left coronary blood flow, which is consistent with the lesser work of the right ventricle. Because right and left coronary artery perfusion pressures are identical, right coronary conductance is less than left coronary conductance, but the signal relating this conductance to the lower right ventricular O2 demand has not been defined. ⋯ The mechanism responsible for right coronary vasodilation at low PO2 has not been delineated. In the poorly autoregulating right coronary circulation, reduced coronary pressure unloads the coronary hydraulic skeleton and reduces right ventricular systolic stiffness. Thus, normal right ventricular external work and O2 demand/supply balance can be maintained during moderate coronary hypoperfusion.