Journal of cellular and molecular medicine
-
Uncontrolled release of Ca(2+) from the sarcoplasmic reticulum (SR) contributes to the reperfusion-induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. ⋯ In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca(2+) oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca(2+) cycling and MPTP promotes the reperfusion-induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.
-
Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic consequences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13-15) and moderate (GCS 9-12) to severe (GCS ≤ 8). The GCS reflects the risk of dying from TBI, which is low after mild (∼1%), intermediate after moderate (up to 15%) and high (up to 40%) after severe TBI. ⋯ Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on molecular and cellular level after TBI.
-
Colorectal carcinoma (CRC) constitutes a common malignancy with limited therapeutic options in metastasized stages. Mesenchymal stem cells (MSC) home to tumours and may therefore serve as a novel therapeutic tool for intratumoral delivery of antineoplastic factors. Tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) which promises apoptosis induction preferentially in tumour cells represents such a factor. ⋯ Systemic TRAIL-MSC caused no toxicity in this model. (5) Wild-type MSC seemed to exert a tumour growth-supporting effect in mixed s.c. DLD-1 xenografts. These novel results support the idea that lentiviral TRAIL-transgenic human MSC may serve as vehicles for clinical tumour therapy but also highlight the need for further investigations to improve tumour integration of transgenic MSC and to clarify a potential tumour-supporting effect by MSC.
-
Recent studies suggest that mesenchymal stem cells (MSCs) possess a greater differentiation potential than once thought and that they have the capacity to regenerate damaged tissues/organs. However, the evidence is insufficient, and the mechanism governing the recruitment and homing of MSCs to these injured sites is not well understood. We first examined the MSCs circulating in peripheral blood and then performed chemotaxis, wound healing and tubule-formation assays to investigate the migration capability of mouse bone marrow MSCs (mBM-MSCs) in response to liver-injury signals. ⋯ CCR9, CXCR4 and c-MET were essential for directing cellular migration towards the injured liver. The recruited mBM-MSCs may play different roles, including hepatic fate specification and down-regulation of the activity of hepatic stellate cells which inhibits over-accumulation of collagen and development of liver fibrosis. Our results provide new insights into liver repair involving endogenous BM-MSCs and add new information for consideration when developing clinical protocols involving the MSCs.
-
Gastrointestinal stromal tumour (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. GISTs are believed to originate from intersticial cells of Cajal (the pacemaker cells of the gastrointestinal tract) or related stem cells, and are characterized by KIT or platelet-derived growth factor receptor alpha (PDGFRA) activating mutations. The use of imatinib has revolutionized the management of GIST and altered its natural history, substantially improving survival time and delaying disease progression in many patients. ⋯ However, the vast majority of patients who initially responded to imatinib will develop tumour progression (secondary resistance). Secondary resistance is often related to secondary KIT or PDGFRA mutations that interfere with drug binding. Multiple novel tyrosine kinase inhibitors may be potentially useful for the treatment of imatinib-resistant GISTs as they interfere with KIT and PDGFRA receptors or with the downstream-signalling proteins.