Genes
-
Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. ⋯ Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues.
-
Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. ⋯ While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.
-
The mutation parameter θ is fundamental and ubiquitous in the analysis of population samples of DNA sequences. This paper presents a new highly efficient estimator of θ by utilizing the phylogenetic information among distinct alleles in a sample of DNA sequences. The new estimator, called Allelic BLUE, is derived from a generalized linear model about the mutations in the allelic genealogy. ⋯ Simulation shows that Allelic BLUE is nearly unbiased, with variance nearly as small as the minimum achievable variance, and in many situations, it can be hundreds- or thousands-fold more efficient than a previous method, which was already quite efficient compared to other approaches. One useful feature of the new estimator is its applicability to collections of distinct alleles without detailed frequencies. The utility of the new estimator is demonstrated by analyzing the pattern of θ in the data from the 1000 Genomes Project.
-
Since the completion of the Human Genome Project, the field of human genetics has been in great flux, largely due to technological advances in studying DNA sequence variation. Although community-wide adoption of statistical standards was key to the success of genome-wide association studies, similar standards have not yet been globally applied to the processing and interpretation of sequencing data. It has proven particularly challenging to pinpoint unequivocally disease variants in sequencing studies of polygenic traits. Here, we comment on a number of factors that may contribute to irreproducible claims of association in scientific literature and discuss possible steps that we can take towards cultural change.