IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Dec 2010
Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study.
Human lumbar spinal cord networks controlling stepping and standing can be activated through posterior root stimulation using implanted electrodes. A new stimulation method utilizing surface electrodes has been shown to excite lumbar posterior root fibers similarly as with implants, an unexpected finding considering the distance to these target neurons. In the present study we apply computer modeling to compare the depolarization of posterior root fibers by both stimulation techniques. ⋯ In these exit regions anterior root fibers can also be activated. The simulation results provide a biophysical explanation for the electrophysiological findings of lower limb muscle responses induced by posterior root stimulation. Efficient excitation of afferent spinal cord structures with a simple noninvasive method can become a promising modality in the rehabilitation of people with motor disorders.
-
IEEE Trans Neural Syst Rehabil Eng · Aug 2010
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. ⋯ When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.
-
IEEE Trans Neural Syst Rehabil Eng · Aug 2010
Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
This work introduces a hybrid brain-computer interface (BCI) composed of an imagery-based brain switch and a steady-state visual evoked potential (SSVEP)-based BCI. The brain switch (event related synchronization (ERS)-based BCI) was used to activate the four-step SSVEP-based orthosis (via gazing at a 8 Hz LED to open and gazing at a 13 Hz LED to close) only when needed for control, and to deactivate the LEDs during resting periods. Only two EEG channels were required, one over the motor cortex and one over the visual cortex. ⋯ Six subjects participated in this study. This combination of two BCIs operated with different mental strategies is one example of a "hybrid" BCI and revealed a much lower rate of FPs per minute during resting periods or breaks compared to the SSVEP BCI alone ( FP=1.46+/-1.18 versus 5.40 +/- 0.90). Four out of the six subjects succeeded in operating the self-paced hybrid BCI with a good performance (positive prediction value PPVb > 0.70).
-
IEEE Trans Neural Syst Rehabil Eng · Apr 2010
Embedded neural recording with TinyOS-based wireless-enabled processor modules.
To create a wireless neural recording system that can benefit from the continuous advancements being made in embedded microcontroller and communications technologies, an embedded-system-based architecture for wireless neural recording has been designed, fabricated, and tested. The system consists of commercial-off-the-shelf wireless-enabled processor modules (motes) for communicating the neural signals, and a back-end database server and client application for archiving and browsing the neural signals. ⋯ The motes acquire neural signals via a custom low-noise neural-signal amplifier with adjustable gain and high-pass corner frequency that has been designed, and fabricated in a 1.5-microm CMOS process. In addition to browsing acquired neural data, the client application enables the user to remotely toggle modes of operation (real-time or spike-only), as well as amplifier gain and high-pass corner frequency.
-
IEEE Trans Neural Syst Rehabil Eng · Dec 2009
Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. ⋯ Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.