Best practice & research. Clinical anaesthesiology
-
The human organism consists of evolutionary conserved mechanisms to prevent death from hypovolaemia. Intravenous fluid therapy to support these mechanisms had first been published about 180 years ago. The present review depicts the evolution of fluid therapy from early, not well-defined solutions up to modern balanced fluids. ⋯ It is therefore unclear whether negative data on colloids in some trials reflect real harm or rather inadequate use. Future studies should focus on optimal protocols for initiation, dosing and discontinuation of fluid therapy in specific disease entities. Moreover, the practice of de-resuscitation after fluid-based haemodynamic stabilization should be further investigated.
-
Best Pract Res Clin Anaesthesiol · Sep 2014
ReviewState-of-the-art fluid management in the operating room.
The underlying principles guiding fluid management in any setting are very simple: maintain central euvolemia, and avoid salt and water excess. However, these principles are frequently easier to state than to achieve. Evidence from recent literature suggests that avoidance of fluid excess is important, with excessive crystalloid use leading to perioperative weight gain and an increase in complications. ⋯ However, within an Enhanced Recovery program only a few studies have been published, yet so far GDFT has not achieved the same benefit. Balanced crystalloids are recommended for most patients. The use of colloids remains controversial; however, current evidence suggests they can be beneficial in intraoperative patients with objective evidence of hypovolemia.
-
Fluid therapy is a core concept in the management of perioperative and critically ill patients for maintenance of intravascular volume and organ perfusion. Recent evidence regarding the vascular barrier and its role in terms of vascular leakage has led to a new concept for fluid administration. ⋯ In daily practice, the assessment of individual thresholds in order to optimize cardiac preload and avoid hypovolaemia or deleterious fluid overload remains a challenge. Liberal versus restrictive fluid management has been challenged by recent evidence, and the ideal approach appears to be goal-directed fluid therapy.
-
Best Pract Res Clin Anaesthesiol · Sep 2014
ReviewRole of the glycocalyx in fluid management: Small things matter.
Intravenous fluid therapy and perception of volume effects are often misunderstood. The pharmacokinetical difference between colloids and crystalloids depends on the condition of the vascular permeability barrier. Its functioning is still largely based on Starling's principle from 1896, realising that transport of fluid to and from the interstitial space follows the balance between opposing oncotic and hydrostatic pressures. ⋯ While crystalloids can freely pass through the glycocalyx, colloids are held back in the vasculature by this structure. This is reflected by a markedly higher intravascular persistence of isooncotic colloids (80-100%) versus crystalloids (around 20%), at least as long as the glycocalyx is intact. Protecting this structure in surgical practice means limiting the surgical trauma and avoiding intravascular hypervolemia.