Best practice & research. Clinical anaesthesiology
-
Blood pressure is overwhelmingly the most commonly measured parameter for the assessment of haemodynamic stability. In clinical routine in the operating theatre and in the intensive care unit, blood pressure measurements are usually obtained intermittently and non-invasively using oscillometry (upper-arm cuff method) or continuously and invasively with an arterial catheter. However, both the oscillometric method and arterial catheter-derived blood pressure measurements have potential limitations. ⋯ In the recent years, technologies for continuous non-invasive blood pressure recording such as the volume clamp method or radial artery applanation tonometry have been developed and validated. The question in which patient groups and clinical settings these technologies should be applied to improve patient safety or outcome has not been definitively answered. In critically ill patients and high-risk surgery patients, further improvement of these technologies is needed before they can be recommended for routine clinical use.
-
Since its inception, the pulmonary artery catheter has enjoyed widespread use in both medical and surgical critically ill patients. It has also endured criticism and skepticism about its benefit in these patient populations. By providing information such as cardiac output, mixed venous oxygen saturation, and intracardiac pressures, the pulmonary artery catheter may improve care of the most complex critically ill patients in the intensive care unit and the operating room. ⋯ Major complications related to catheter placement are infrequent, but misinterpretation of monitored data is not uncommon and has led many to question the utility of the pulmonary artery catheter. The evidence to date suggests that the use of the catheter does not change mortality in many critically ill patients and may expose these patients to a higher rate of complications. However, additional clinical trials are needed, particularly in the most complex critically ill patients, who have generally been excluded from many of the research trials performed to date.
-
Symptomatic hypotension (maternal nausea, vomiting, dizziness and dyspnoea) during spinal anaesthesia for caesarean delivery remains a prevalent clinical problem. Severe and sustained hypotension can lead to impairment of uteroplacental perfusion, foetal hypoxia, acidosis, neonatal depression and further adverse maternal outcomes of unconsciousness, pulmonary aspiration, apnoea and cardiac arrest. ⋯ Intravenous crystalloid preloading (given prior to administration of spinal anaesthesia) has poor efficacy, and focus has changed towards decreased use of crystalloid preload and ephedrine, to increased use of coload (given at the time of spinal administration) with colloids or crystalloids, and early use of phenylephrine. The recent multicentre, randomised, double-blinded CAESAR trial demonstrated the efficacy of a mixed 500 ml 6% hydroxyethyl starch (HES) 130/0.4 + 500 ml Ringer's lactate (RL) preload in significantly reducing hypotension, compared to a 1-l RL preload, without adverse effects on coagulation and neonatal outcomes in healthy parturients undergoing caesarean delivery under spinal anaesthesia.
-
Best Pract Res Clin Anaesthesiol · Sep 2014
ReviewBalanced versus unbalanced salt solutions: what difference does it make?
The infusion of crystalloid solutions is a fundamental part of the management of critically ill patients. These solutions are used to maintain the balance of water and essential electrolytes and replace losses when patients have limited gastrointestinal intake. They also act as carriers for intravenous infusion of medication and red cells. The most commonly used solution, 0.9% saline, has equal concentrations of Na(+) and Cl(-) even though the plasma concentration of Na(+) normally is 40 meq/L higher than that of Cl(-). The use of this fluid thus can produce a hyperchloremic acidosis in a dose-dependent manner, but it is not known whether this has clinical significance. ⋯ There are strong observational data that support the notion that avoiding an elevated Cl(-) concentration or using fluids that reduce the rise in Cl(-) reduces renal dysfunction, infections, and possibly even mortality. However, observational studies only can indicate an association and cannot indicate causality. Unfortunately, randomized trials to date are far too limited to address this crucial issue. What is clear is that appropriate randomized trials will require very large populations. It also is not known whether the important variable is the concentration of Cl(-), the difference in concentrations of Na(+) and Cl(-), or the total body mass of Cl(-).