Articles: mechanical-ventilation.
-
During the last decade, experimental and clinical studies have demonstrated that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after brain injury (BI). The pathophysiology of these brain-lung interactions are complex and involve neurogenic pulmonary oedema, inflammation, neurodegeneration, neurotransmitters, immune suppression and dysfunction of the autonomic system. ⋯ Although current knowledge supports protective ventilation in patients with BI, it must be born in mind that ABI-related lung injury has distinct mechanisms that involve complex interactions between the brain and lungs. In this context, the role of extracerebral pathophysiology, especially in the lungs, has often been overlooked, as most physicians focus on intracranial injury and cerebral dysfunction. The present review aims to fill this gap by describing the pathophysiology of complications due to lung injuries in patients with a single ABI, and discusses the possible impact of MV in neurocritical care patients with normal lungs.
-
Intensive Care Med Exp · Oct 2021
Computed tomographic assessment of lung aeration at different positive end-expiratory pressures in a porcine model of intra-abdominal hypertension and lung injury.
Intra-abdominal hypertension (IAH) is common in critically ill patients and is associated with increased morbidity and mortality. High positive end-expiratory pressures (PEEP) can reverse lung volume and oxygenation decline caused by IAH, but its impact on alveolar overdistension is less clear. We aimed to find a PEEP range that would be high enough to reduce atelectasis, while low enough to minimize alveolar overdistention in the presence of IAH and lung injury. ⋯ Our findings in a large animal model suggest that titrating a PEEP to respiratory mechanics or oxygenation in the presence of IAH is associated with increased alveolar overdistension.
-
To evaluate the effects of esophageal pressure monitoring in adult patients with mechanical ventilation requirements in the Intensive Care Unit. ⋯ Evidence of low or very low certainty indicates that esophageal pressure monitoring during mechanical ventilation would produce little or no effect on Intensive Care Unit mortality, Intensive Care Unit length of stay, days on mechanical ventilation or adverse events.
-
Assessment of the respiratory changes of the inferior vena cava (IVC) diameter have been investigated as a reliable tool to estimate the volume status in mechanically ventilated and spontaneously breathing patients. Our purpose was to compare the echocardiographic measurements the IVC diameter, stroke volume and cardiac output in different positive pressure ventilation parameters. ⋯ The results of our study suggest that IVC related parameters are not affected with different ventilatory settings. Further studies are needed to confirm the reliability of these parameters as a predictor of fluid assessment.
-
The growing number of patients on home mechanical ventilation has driven considerable progress in the performance and functionality of ventilators, with features comparable with those used in the ICU. However, a publication gap exists in the evaluation and comparison of their performance and each ventilator choice depends on machine characteristics defined by manufacturers. ⋯ Great variability in terms of technical performance was observed among the 8 home-care ventilators analyzed. Asynchronies became a major issue when home mechanical ventilation was used under higher pressure-support values and lower muscle efforts. Our results may prove to be useful in helping choose the best suited machine based on a patient's clinical therapy needs.