Articles: mechanical-ventilation.
-
Observational Study
Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19.
Patients with coronavirus disease 2019 (COVID-19) requiring mechanical ventilation have high mortality and resource utilisation. The ability to predict which patients may require mechanical ventilation allows increased acuity of care and targeted interventions to potentially mitigate deterioration. ⋯ Machine learning techniques can be leveraged to improve the ability to predict which patients with COVID-19 are likely to require mechanical ventilation, identifying unrecognised bellwethers and providing insight into the constellation of accompanying signs of respiratory failure in COVID-19.
-
Limited adult data suggest that airway driving pressure might better reflect the potential risk for lung injury than tidal volume based on ideal body weight, and the parameter correlates with mortality in ARDS. There is a lack of data about the effect of driving pressure on mortality in pediatric ARDS. This study aimed to evaluate the effect of driving pressure on morbidity and mortality of children with acute hypoxemic respiratory failure. ⋯ Below a threshold of 15 cm H2O, ΔP was associated with significantly decreased morbidity in children with acute hypoxemic respiratory failure.
-
During the COVID-19 pandemic, a need for innovative, inexpensive, and simple ventilator devices for mass use has emerged. The Oxylator (CPR Medical Devices, Markham, Ontario, Canada) is an FDA-approved, fist-size, portable ventilation device developed for out-of-hospital emergency ventilation. It has not been tested in conditions of severe lung injury or with added PEEP. We aimed to assess the performance and reliability of the device in simulated and experimental conditions of severe lung injury, and to derive monitoring methods to allow the delivery of safe, individualized ventilation during situations of surge. ⋯ The Oxylator is a simple device that delivered stable ventilation with tidal volumes within a clinically acceptable range in bench and porcine lung models with low compliance. External monitoring of respiratory timing is advisable, allowing tidal volume estimation and recognition of changes in respiratory mechanics. The device can be an efficient, low-cost, and practical rescue solution for providing short-term ventilatory support as a temporary bridge, but it requires a caregiver at the bedside.
-
Am. J. Respir. Crit. Care Med. · Mar 2021
Clinical TrialHigh Pleural Pressure Prevents Alveolar Overdistension and Hemodynamic Collapse in ARDS with Class III Obesity.
Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension. ⋯ Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure. Clinical trial registered with www.clinicaltrials.gov (NCT02503241).
-
Review Meta Analysis
Reducing the dose of neuromuscular blocking agents with adjuncts: a systematic review and meta-analysis.
Acute global shortages of neuromuscular blocking agents (NMBA) threaten to impact adversely on perioperative and critical care. The use of pharmacological adjuncts may reduce NMBA dose. However, the magnitude of any putative effects remains unclear. ⋯ PROSPERO: CRD42020183969.