Articles: mechanical-ventilation.
-
During the COVID-19 pandemic, a need for innovative, inexpensive, and simple ventilator devices for mass use has emerged. The Oxylator (CPR Medical Devices, Markham, Ontario, Canada) is an FDA-approved, fist-size, portable ventilation device developed for out-of-hospital emergency ventilation. It has not been tested in conditions of severe lung injury or with added PEEP. We aimed to assess the performance and reliability of the device in simulated and experimental conditions of severe lung injury, and to derive monitoring methods to allow the delivery of safe, individualized ventilation during situations of surge. ⋯ The Oxylator is a simple device that delivered stable ventilation with tidal volumes within a clinically acceptable range in bench and porcine lung models with low compliance. External monitoring of respiratory timing is advisable, allowing tidal volume estimation and recognition of changes in respiratory mechanics. The device can be an efficient, low-cost, and practical rescue solution for providing short-term ventilatory support as a temporary bridge, but it requires a caregiver at the bedside.
-
Limited adult data suggest that airway driving pressure might better reflect the potential risk for lung injury than tidal volume based on ideal body weight, and the parameter correlates with mortality in ARDS. There is a lack of data about the effect of driving pressure on mortality in pediatric ARDS. This study aimed to evaluate the effect of driving pressure on morbidity and mortality of children with acute hypoxemic respiratory failure. ⋯ Below a threshold of 15 cm H2O, ΔP was associated with significantly decreased morbidity in children with acute hypoxemic respiratory failure.
-
High-flow nasal cannula (HFNC) is an option for respiratory support in patients with acute hypoxic respiratory failure. To improve patient outcomes, reduce ICU-associated costs, and ease ICU bed availability, a multi-phased, comprehensive strategy was implemented to make HFNC available outside the ICU under the supervision of pulmonology or trauma providers in cooperation with a dedicated respiratory therapy team. The purpose of this study was to describe the education and implementation process for initiating HFNC therapy outside the ICU and to convey key patient demographics and outcomes from the implementation period. ⋯ A comprehensive implementation process and a robust therapy protocol were integral to initiating and managing HFNC in all hospital locations. Study findings indicate that patients with acute hypoxic respiratory failure can safely receive HFNC therapy outside the ICU with appropriate patient selection and staff education.
-
Observational Study
Clinically applicable approach for predicting mechanical ventilation in patients with COVID-19.
Patients with coronavirus disease 2019 (COVID-19) requiring mechanical ventilation have high mortality and resource utilisation. The ability to predict which patients may require mechanical ventilation allows increased acuity of care and targeted interventions to potentially mitigate deterioration. ⋯ Machine learning techniques can be leveraged to improve the ability to predict which patients with COVID-19 are likely to require mechanical ventilation, identifying unrecognised bellwethers and providing insight into the constellation of accompanying signs of respiratory failure in COVID-19.
-
Intensive care medicine · Mar 2021
ReviewRespiratory microbiome in mechanically ventilated patients: a narrative review.
The respiratory microbiome has been less explored than the gut microbiome. Despite the speculated importance of dysbiosis of the microbiome in ventilator-associated pneumonia (VAP) and acute respiratory distress syndrome (ARDS), only few studies have been performed in invasively ventilated ICU patients. And only the results of small cohorts have been published. ⋯ Priority should be given to validate a consensual and robust methodology for respiratory microbiome research and to conduct longitudinal studies. A deeper understanding of microbial interplay should be a valuable guide for care of ARDS and VAP preventive/therapeutic strategies. We present a review on the current knowledge and expose perspectives and potential clinical applications of respiratory microbiome research in mechanically ventilated patients.