Articles: mechanical-ventilation.
-
To determine whether placental cell therapy PLacental eXpanded (PLX)-PAD (Pluristem Therapeutics, Haifa, Israel) may be beneficial to treating critically ill patients suffering from acute respiratory distress syndrome due to coronavirus disease 2019. ⋯ Improvement in several variables such as C-reactive protein, positive end-expiratory pressure, and Pao2/Fio2 was observed following PLacental eXpanded (PLX)-PAD treatment, suggesting possible therapeutic effect. However, interpretation of the data is limited due to the small sample size, use of concomitant investigational therapies, and the uncontrolled study design. The efficacy of PLacental eXpanded (PLX)-PAD in coronavirus disease 2019 should be further evaluated in a controlled clinical trial.
-
Randomized Controlled Trial Multicenter Study
Individualized PEEP to optimise respiratory mechanics during abdominal surgery: a pilot randomised controlled trial.
Higher intraoperative driving pressures (ΔP) are associated with increased postoperative pulmonary complications (PPC). We hypothesised that dynamic adjustment of PEEP throughout abdominal surgery reduces ΔP, maintains positive end-expiratory transpulmonary pressures (Ptp_ee) and increases respiratory system static compliance (Crs) with PEEP levels that are variable between and within patients. ⋯ NCT02671721.
-
The 2019-2020 coronavirus pandemic elucidated how a single highly infectious virus can overburden health care systems of even highly economically developed nations. A leading contributor to these concerning outcomes is a lack of available intensive care unit (ICU) beds and mechanical ventilation support. Poorer health is associated with a higher risk for severe respiratory complications from the coronavirus. ⋯ However, measures of respiratory muscle performance are not routinely performed in clinical practice, including those with symptoms such as dyspnea. The purpose of this article is to discuss the potential role of respiratory muscle performance from the perspective of the coronavirus pandemic. We also provide a theoretical patient management model to screen for impaired respiratory muscle performance and intervention, if identified, with the goal of unburdening health care systems during future pandemic crises.
-
Am. J. Respir. Crit. Care Med. · Sep 2020
Observational StudyPulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging and Hematologic Observations.
Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology. Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia. Methods: Clinical, physiologic, and laboratory data were collated. ⋯ Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6). Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.