Articles: mechanical-ventilation.
-
Semin Respir Crit Care Med · Feb 2019
ReviewPathophysiology and Management of Acute Respiratory Distress Syndrome in Obese Patients.
A rising prevalence of obesity is reported over time and throughout the world. At the same time, the acute respiratory distress syndrome (ARDS) remains an important public health problem, accounting for approximately 10% of intensive care unit admissions and leading to significant hospital mortality. Even in the absence of acute illnesses, obesity affects respiratory mechanics and gas exchange in the setting of a restrictive disease. ⋯ Then the diagnostic challenges due to obesity-related artifacts of the different imaging techniques will be presented. A subsequent, detailed description of the altered respiratory anatomy and physiology of obesity will provide help in selecting an optimal, individually tailored strategy of support. Furthermore, we will discuss how esophageal manometry should be used to adjust the settings of positive end-expiratory pressure and tidal volume; the challenges of prone positioning and extracorporeal support; and the optimal strategies for weaning from mechanical ventilation, including when and how to perform a tracheostomy.
-
Multicenter Study Observational Study
Driving pressure and acute respiratory distress syndrome in critically ill patients.
Elevated driving pressure (ΔP) may be associated with increased risk of acute respiratory distress syndrome (ARDS) in patients admitted via the emergency department and with post-operative pulmonary complications in surgical patients. This study investigated the association of higher ΔP with the onset of ARDS in a high-risk, intensive care unit (ICU) population. ⋯ Among at-risk ICU patients, higher ΔP may identify those who are more likely to develop ARDS.
-
Ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH) patients often require endotracheal intubation (EI) and mechanical ventilation (MV). Predicting the need for prolonged EI and timing of tracheostomy (TR) is challenging. While TR is performed for about 10-15% of patients in the general intensive care unit (ICU), the rate in the neurological ICU and for stroke patients ranges between 15 and 35%. Thus, we performed an external validation of the recently published SETscore. ⋯ SETscore is a simple score with a moderate accuracy and with a fair AUC used to predict the need for TR after MV for IS, ICH, and SAH patients. Our study also demonstrates that early TR was associated with a lower ICU LOS and VD in our cohort. The utility of this score may be improved when including additional variables such as BMI, AA race, ICH, and positive sputum cultures.
-
Journal of critical care · Feb 2019
A comparison of the effects of manual hyperinflation and ventilator hyperinflation on restoring end-expiratory lung volume after endotracheal suctioning: A pilot physiologic study.
Endotracheal suctioning (ES) of mechanically ventilated patients decreases end-expiratory lung volume (EELV). Manual hyperinflation (MHI) and ventilator hyperinflation (VHI) may restore EELV post-ES but it remains unknown which method is most effective. The primary aim was to compare the efficacy of MHI and VHI in restoring EELV post-ES. ⋯ MHI and VHI effectively restore EELV above baseline post-ES and should be considered post suctioning.
-
Recruitment manoeuvres generate a transient increase in trans-pulmonary pressure that could open collapsed alveoli. Recruitment manoeuvres might generate very high inspiratory airflows. We evaluated whether recruitment manoeuvres could displace respiratory secretions towards the distal airways and impair gas exchange in a porcine model of bacterial pneumonia. ⋯ Recruitment manoeuvres dislodge mucus distally, irrespective of airflow generated by different recruitment manoeuvres. Further investigation in humans is warranted to corroborate these pre clinical findings, as there may be limited benefits associated with lung recruitment in pneumonia.