Articles: mechanical-ventilation.
-
Annals of intensive care · Dec 2016
Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation: a prospective longitudinal study.
In intensive care unit (ICU) patients, diaphragmatic dysfunction (DD) can occur on admission or during the subsequent stay. The respective incidence of these two phenomena has not been previously studied in humans. The study was designed to describe temporal trends in diaphragm function in mechanically ventilated (MV) patients. ⋯ DD is observed in a large majority of MV patients ≥5 days at some point of their ICU stay. Various patterns of DD are observed, including DD on initiation of mechanical ventilation and ICU-acquired DD. Trial registration clinicaltrials.gov Identifier # NCT00786526.
-
Artificial airway resistance as provided by small-lumen tracheal tubes or catheters increases the risk of intrinsic PEEP (PEEPi). We hypothesized that by active expiration assistance, larger minute volumes could be generated without causing PEEPi compared with conventional mechanical ventilation when using small-lumen tracheal tubes or a cricothyrotomy catheter. ⋯ For mechanical ventilation via small-lumen tubes or thin catheters, active compensation of airway resistance might be a necessary means to generate adequate minute ventilation without causing PEEPi. Active expiration assistance can generate reasonable respiratory minute volumes via small-lumen tubes or thin catheters.
-
Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. ⋯ PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.
-
Although increasingly recommended, compliance with low Vt ventilation remains suboptimal. Dyssynchrony induced by low Vts may be a reason for it. ⋯ Lower Vts during VC ventilation result in higher patient-ventilator dyssynchrony in most patients with or at risk for acute respiratory distress syndrome. The use of APC mode is an option to reduce dyssynchrony, but it requires careful monitoring to avoid larger-than-target delivered volumes.
-
Intensive Care Med Exp · Dec 2016
Kinetics of arterial carbon dioxide during veno-venous extracorporeal membrane oxygenation support in an apnoeic porcine model.
Extracorporeal membrane oxygenation (ECMO) is a technique widely used worldwide to improve gas exchange. Changes in ECMO settings affect both oxygen and carbon dioxide. The impact on oxygenation can be followed closely by continuous pulse oximeter. Conversely, carbon dioxide equilibrates much slower and is not usually monitored directly. ⋯ Fifty minutes was enough to reach the equilibrium of PaCO2 after ECMO initiation or after changes in blood and sweep gas flow with an ECMO blood flow of 3500 ml/min. Longer periods may be necessary with lower ECMO blood flows.