Articles: mechanical-ventilation.
-
Accuracy of esophageal pressure measured by an air-filled esophageal balloon catheter is dependent on balloon filling volume. However, this has been understudied in mechanically ventilated children. We sought to study the optimal filling volume in children receiving ventilation by using previously reported calibration methods. Secondary objectives included to examine the difference in pressure measurements at individualized optimal filling volume versus a standardized inflation volume and to study if a static hold during calibration is required to identify the optimal filling volume. ⋯ The optimal balloon inflation volume was highly variable, which indicated the need for an individual calibration procedure. Pes was not overestimated when an inspiratory hold was not applied.
-
Negative-pressure ventilation (NPV) is a form of noninvasive ventilation that has been recently utilized in pediatric acute respiratory failure. Negative-pressure ventilators apply negative pressure onto the chest wall via a cuirass to recruit areas of atelectasis. Continuous negative extrathoracic pressure, the most common mode, is similar to CPAP, where negative pressure is maintained at a constant level throughout the respiratory cycle while patients initiate their own breaths and continue to breathe spontaneously throughout. ⋯ Supplemental oxygen is provided through a nasal cannula or face mask due of the lack of NPV devices' interface with the mouth or nose. NPV can improve preload to the heart and cardiac output (CO) in patients with restrictive right-ventricular physiology requiring CO augmentation and those with Fontan physiology. The purpose of this article is to review the physiological principles of spontaneous and NPV, examine the evidence supporting the use of NPV, give practical and meaningful guidance on its clinical application in the pediatric ICU, and summarize areas for future studies on its uses.
-
Observational Study
Intraoperative mechanical power and postoperative pulmonary complications in low-risk surgical patients: a prospective observational cohort study.
Inadequate intraoperative mechanical ventilation (MV) can lead to ventilator-induced lung injury and increased risk for postoperative pulmonary complications (PPCs). Mechanical power (MP) was shown to be a valuable indicator for MV outcomes in critical care patients. The aim of this study is to assess the association between intraoperative MP in low-risk surgical patients undergoing general anesthesia and PPCs. ⋯ NCT03551899; 24/02/2017.
-
Setting positive end-expiratory pressure (PEEP) at around 5 cm H2O in the early postoperative period seems a common practice for most patients. It remains unclear if the routine application of higher levels of PEEP confers any meaningful clinical benefit for cardiac surgical patients. The aim of this study was to compare moderate versus conventional lower PEEP on patient-centered outcomes in the intensive care unit (ICU). ⋯ In selective cardiac surgical patients, using moderate PEEP compared with conventional lower PEEP in the early postoperative period correlated to better oxygenation, which may have potential for earlier liberation of mechanical ventilation.
-
Background and Objectives: This study aimed to assess the value of a novel prognostic model, based on clinical variables, comorbidities, and demographic characteristics, to predict long-term prognosis in patients who received mechanical ventilation (MV) for over 14 days and who underwent a tracheostomy during the first 14 days of MV. Materials and Methods: Data were obtained from 278 patients (66.2% male; median age: 71 years) who underwent a tracheostomy within the first 14 days of MV from February 2011 to February 2021. Factors predicting 1-year mortality after the initiation of MV were identified by binary logistic regression analysis. ⋯ Based on the maximum Youden index, the cut-off value for predicting mortality was set at ≥2, with a sensitivity of 67.4% and a specificity of 76.3%. Conclusions: The tracheostomy-ProVent score is a good predictive tool for estimating 1-year mortality in tracheostomized patients undergoing MV for >14 days. This comprehensive model integrates clinical variables and comorbidities, enhancing the precision of long-term prognosis in these patients.