Articles: mechanical-ventilation.
-
Robotic-assisted surgery has improved the precision and accuracy of surgical movements with subsequent improved outcomes. However, it requires steep Trendelenburg positioning combined with pneumoperitoneum that negatively affects respiratory mechanics and increases the risk of postoperative respiratory complications. This narrative review summarises the state of the art in ventilatory management of these patients in terms of levels of positive end-expiratory pressure (PEEP), tidal volume, recruitment manoeuvres, and ventilation modes during both urological and gynaecological robotic-assisted surgery. ⋯ Recruitment manoeuvres improved intraoperative arterial oxygenation, end-expiratory lung volume and the distribution of ventilation to dependent (dorsal) lung regions. Pressure-controlled compared with volume-controlled ventilation showed lower peak airway pressures with both higher compliance and higher carbon dioxide clearance. We propose directions to optimise ventilatory management during robotic surgery in light of the current evidence.
-
Data science has the potential to greatly enhance efforts to translate evidence into practice in critical care. The intensive care unit is a data-rich environment enabling insight into both patient-level care patterns and clinician-level treatment patterns. By applying artificial intelligence to these novel data sources, implementation strategies can be tailored to individual patients, individual clinicians, and individual situations, revealing when evidence-based practices are missed and facilitating context-sensitive clinical decision support. To achieve these goals, technology developers should work closely with clinicians to create unbiased applications that are integrated into the clinical workflow.
-
Critical care medicine · Oct 2023
Observational StudyReliability of Respiratory System Compliance Calculation During Assisted Mechanical Ventilation: A Retrospective Study.
To compare respiratory system compliance (C rs ) calculation during controlled mechanical ventilation (MV) and, subsequently, during assisted MV. ⋯ A P plat visually stable for at least 2 seconds leads to reliable C rs calculation during assisted MV.
-
Gastrointestinal (GI) motility disorders may be directly associated with the intensity of acute brain injury, edema of the brainstem, and opioid use in neurosurgical patients. ⋯ Significant correlation was registered between brainstem edema, gastrointestinal dysmotility, and opioids. CNS bleeding was the most important single factor influencing GI dysmotility. Further studies with opioid and nonopioid sedation may distinguish the influence of acute brain lesions versus drugs on GI dysmotility.
-
Determination of optimum PEEP levels remains an elusive goal. One factor is the recruitability of the lung, yet this is another difficult determination. Recently, a simple bedside technique, called the recruitment-to-inflation ratio, has been described and validated by comparison to the dual pressure-volume curve method. We describe the prior research and concepts of lung mechanics leading up to this metric and develop some background mathematics that help clinicians understand its meaning.