Articles: traumatic-brain-injuries.
-
Multicenter Study Comparative Study Observational Study
Structure, Process, and Culture Differences of Pediatric Trauma Centers Participating in an International Comparative Effectiveness Study of Children with Severe Traumatic Brain Injury.
Traumatic brain injury (TBI) is an important worldwide cause of death and disability for children. The Approaches and Decisions for Acute Pediatric TBI (ADAPT) Trial is an observational, cohort study to compare the effectiveness of six aspects of TBI care. Understanding the differences between clinical sites-including their structure, clinical processes, and culture differences-will be necessary to assess differences in outcome from the study and can inform the overall community regarding differences across academic centers. ⋯ We found a variety of inter-center structure, process, and culture differences. These intrinsic differences between sites may begin to explain why interventional studies have failed to prove efficacy of experimental therapies. Understanding these differences may be an important factor in analyzing future ADAPT trial results and in determining best practices for pediatric severe TBI.
-
Journal of neurosurgery · Jun 2016
ReviewGraph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.
Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. ⋯ Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.
-
Anesthesia and analgesia · Jun 2016
ReviewThe Anesthesiologist's Role in Treating Abusive Head Trauma.
Abusive head trauma (AHT) is the most common cause of severe traumatic brain injury (TBI) in infants and the leading cause of child abuse-related deaths. For reasons that remain unclear, mortality rates after moderate AHT rival those of severe nonintentional TBI. The vulnerability of the developing brain to injury may be partially responsible for the poor outcomes observed after AHT. ⋯ The acute-on-chronic nature of the trauma along with synergistic injury mechanisms that include rapid rotation of the brain, diffuse axonal injury, blunt force trauma, and hypoxia-ischemia make AHT challenging to treat. The anesthesiologist must understand the complex injury mechanisms inherent to AHT, as well as the pediatric TBI treatment guidelines, to decrease the risk of persistent neurologic disability and death. In this review, we discuss the epidemiology of AHT, differences between AHT and nonintentional TBI, the severe pediatric TBI treatment guidelines in the context of AHT, anesthetic considerations, and ethical and legal reporting requirements.
-
Journal of neurosurgery · Jun 2016
Multicenter StudyAlcohol and mortality after moderate to severe traumatic brain injury: a meta-analysis of observational studies.
OBJECT Experimental studies have shown numerous neuroprotective properties of alcohol ("ethanol") after TBI, but clinical studies have provided conflicting results. The authors aimed to assess the relationship between positive blood alcohol concentration (BAC) on hospital admission and mortality after moderate to severe traumatic brain injury (TBI). METHODS The authors searched 8 databases for observational studies reported between January 1, 1990, and October 7, 2013, and investigated the effect of BAC on mortality after moderate to severe TBI. ⋯ CONCLUSIONS Positive BAC was significantly associated with lower mortality rates in moderate to severe TBI. Whether this observation is due to selection bias or neuroprotective effects of alcohol remains unknown. Future prospective studies adjusting for TBI heterogeneity is advocated to establish the potential favorable effects of alcohol on outcome after TBI.
-
Journal of neurosurgery · Jun 2016
Sequential changes in Rotterdam CT scores related to outcomes for patients with traumatic brain injury who undergo decompressive craniectomy.
OBJECT Rotterdam CT scoring is a CT classification system for grouping patients with traumatic brain injury (TBI) based on multiple CT characteristics. This retrospective study aimed to determine the relationship between initial or preoperative Rotterdam CT scores and TBI prognosis after decompressive craniectomy (DC). METHODS The authors retrospectively reviewed the medical records of all consecutive patients who underwent DC for nonpenetrating TBI in 2 hospitals from January 2006 through December 2013. ⋯ Multivariable logistic regression analysis adjusted for established predictors of TBI outcomes showed that initial Rotterdam CT scores were significantly associated with mortality (OR 4.98, 95% CI 1.40-17.78, p = 0.01) and unfavorable outcomes (OR 3.66, 95% CI 1.29-10.39, p = 0.02) and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes (OR 15.29, 95% CI 2.50-93.53, p = 0.003). ROC curve analyses showed cutoff values for the initial Rotterdam CT score of 5.5 (area under the curve [AUC] 0.74, 95% CI 0.59-0.90, p = 0.009, sensitivity 50.0%, and specificity 88.2%) for mortality and 4.5 (AUC 0.71, 95% CI 0.56-0.86, p = 0.02, sensitivity 62.5%, and specificity 75.0%) for an unfavorable outcome and a cutoff value for the preoperative Rotterdam CT score of 4.5 (AUC 0.81, 95% CI 0.69-0.94, p < 0.001, sensitivity 90.6%, and specificity 56.2%) for an unfavorable outcome. CONCLUSIONS Assessment of changes in Rotterdam CT scores over time may serve as a prognostic indicator in TBI and can help determine which patients require DC.