Articles: traumatic-brain-injuries.
-
Journal of neurosurgery · Jun 2016
ReviewGraph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.
Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. ⋯ Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.
-
Journal of neurosurgery · Jun 2016
Sequential changes in Rotterdam CT scores related to outcomes for patients with traumatic brain injury who undergo decompressive craniectomy.
OBJECT Rotterdam CT scoring is a CT classification system for grouping patients with traumatic brain injury (TBI) based on multiple CT characteristics. This retrospective study aimed to determine the relationship between initial or preoperative Rotterdam CT scores and TBI prognosis after decompressive craniectomy (DC). METHODS The authors retrospectively reviewed the medical records of all consecutive patients who underwent DC for nonpenetrating TBI in 2 hospitals from January 2006 through December 2013. ⋯ Multivariable logistic regression analysis adjusted for established predictors of TBI outcomes showed that initial Rotterdam CT scores were significantly associated with mortality (OR 4.98, 95% CI 1.40-17.78, p = 0.01) and unfavorable outcomes (OR 3.66, 95% CI 1.29-10.39, p = 0.02) and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes (OR 15.29, 95% CI 2.50-93.53, p = 0.003). ROC curve analyses showed cutoff values for the initial Rotterdam CT score of 5.5 (area under the curve [AUC] 0.74, 95% CI 0.59-0.90, p = 0.009, sensitivity 50.0%, and specificity 88.2%) for mortality and 4.5 (AUC 0.71, 95% CI 0.56-0.86, p = 0.02, sensitivity 62.5%, and specificity 75.0%) for an unfavorable outcome and a cutoff value for the preoperative Rotterdam CT score of 4.5 (AUC 0.81, 95% CI 0.69-0.94, p < 0.001, sensitivity 90.6%, and specificity 56.2%) for an unfavorable outcome. CONCLUSIONS Assessment of changes in Rotterdam CT scores over time may serve as a prognostic indicator in TBI and can help determine which patients require DC.
-
Multicenter Study
The effect of continuous hypertonic saline infusion and hypernatremia on mortality in patients with severe traumatic brain injury: a retrospective cohort study.
Hypertonic saline (HTS) is used to control intracranial pressure (ICP) in patients with traumatic brain injury (TBI); however, in prior studies, the resultant hypernatremia has been associated with increased mortality. We aimed to study the effect of HTS on ICP and mortality in patients with severe TBI. ⋯ Hypertonic saline and hypernatremia are not associated with hospital mortality in patients with severe TBI.
-
Anesthesia and analgesia · Jun 2016
ReviewThe Anesthesiologist's Role in Treating Abusive Head Trauma.
Abusive head trauma (AHT) is the most common cause of severe traumatic brain injury (TBI) in infants and the leading cause of child abuse-related deaths. For reasons that remain unclear, mortality rates after moderate AHT rival those of severe nonintentional TBI. The vulnerability of the developing brain to injury may be partially responsible for the poor outcomes observed after AHT. ⋯ The acute-on-chronic nature of the trauma along with synergistic injury mechanisms that include rapid rotation of the brain, diffuse axonal injury, blunt force trauma, and hypoxia-ischemia make AHT challenging to treat. The anesthesiologist must understand the complex injury mechanisms inherent to AHT, as well as the pediatric TBI treatment guidelines, to decrease the risk of persistent neurologic disability and death. In this review, we discuss the epidemiology of AHT, differences between AHT and nonintentional TBI, the severe pediatric TBI treatment guidelines in the context of AHT, anesthetic considerations, and ethical and legal reporting requirements.
-
Critical care medicine · Jun 2016
Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.
Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. ⋯ Autonomic impairment, as measured by heart rate variability and baroreflex sensitivity, is significantly associated with increased mortality after traumatic brain injury. These effects, though partially interlinked, seem to be independent of age, trauma severity, intracranial pressure, or autoregulatory status, and thus represent a discrete phenomenon in the pathophysiology of traumatic brain injury. Continuous measurements of heart rate variability and baroreflex sensitivity in the neuromonitoring setting of severe traumatic brain injury may carry novel pathophysiological and predictive information.