Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Mar 2016
Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.
Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. ⋯ Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.
-
Journal of neurotrauma · Mar 2016
Insight into Preclinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy.
Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). ⋯ Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.
-
Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. ⋯ In conclusions, anodal tDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation.
-
Abnormal movements are frequently encountered in patients with brain injury hospitalized in intensive care units (ICUs), yet characterization of these movements and their underlying pathophysiology is difficult due to the comatose or uncooperative state of the patient. In addition, the available diagnostic approaches are largely derived from outpatients with neurodegenerative or developmental disorders frequently encountered in the outpatient setting, thereby limiting the applicability to inpatients with acute brain injuries. Thus, we reviewed the available literature regarding abnormal movements encountered in acutely ill patients with brain injuries. ⋯ This model seeks to classify observed abnormal movements in light of various patient-specific factors. It begins with classifying the patient's level of consciousness. Then, it integrates the frequency and type of each movement with the availability of ancillary diagnostic tests and the specific etiology of brain injury.
-
Clin Neurol Neurosurg · Mar 2016
TBI prognosis calculator: A mobile application to estimate mortality and morbidity following traumatic brain injury.
Traumatic Brain Injury (TBI) is a significant public health problem and a leading cause of worldwide mortality and morbidity. Although effective evidence-based guidelines are available to help with management, the first question clinicians and family face is whether or not it is appropriate to intervene at all. To facilitate prognostic assessment and family counseling, we developed mobile application integrating validated TBI prognostic models. ⋯ Prompt and accurate prognosis estimation in TBI is promising. Mobile applications have the potential to enable easier and quicker point-of-care access to validated models, providing additional information to improve management and family counseling. We anticipate that clinicians will find "TBI Prognosis Calculator" useful as an adjunct in their prognostic assessment and family counseling.