Articles: traumatic-brain-injuries.
-
Oxidative stress is thought to participate in the pathobiology of secondary brain injury after acute traumatic brain injury (TBI). This study posits that oxidative stress levels in acute TBI are predictive of outcome. ⋯ Quantifying biomarkers of oxidative stress and antioxidant status of serum correlate with trauma severity and may be used to predict outcomes after TBI. Higher serum GSH levels on admission are associated with better outcome.
-
Experimental neurology · Mar 2016
Alterations of functional properties of hippocampal networks following repetitive closed-head injury.
Traumatic brain injury (TBI) is the leading cause of death for persons under the age of 45. Military service members who have served on multiple combat deployments and contact-sport athletes are at particular risk of sustaining repetitive TBI (rTBI). Cognitive and behavioral deficits resulting from rTBI are well documented. ⋯ Moreover, the effect of 3× CHI on mIPSCs was opposite to that of the sIPSCs. Specifically, the frequency of the mIPSCs was decreased while the amplitudes were increased. These results are consistent with a mechanism in which repetitive closed-head injury affects CA1 hippocampal function by promoting a remodeling of excitatory and inhibitory synaptic inputs leading to impairment in hippocampal-dependent tasks.
-
Review Meta Analysis
Hypertonic saline in severe traumatic brain injury: a systematic review and meta-analysis of randomized controlled trials.
Hypertonic saline solutions are increasingly used to treat increased intracranial pressure following severe traumatic brain injury. However, whether hypertonic saline provides superior management of intracranial pressure and improves outcome is unclear. We thus conducted a systematic review to evaluate the effect of hypertonic saline in patients with severe traumatic brain injury. ⋯ We observed no mortality benefit or effect on the control of intracranial pressure with the use of hypertonic saline when compared to other solutions. Based on the current level of evidence pertaining to mortality or control of intracranial pressure, hypertonic saline could thus not be recommended as a first-line agent for managing patients with severe traumatic brain injury.
-
Traumatic brain injury (TBI) remains a major cause of morbidity and mortality worldwide. Largely, the prognosis is dependent on the nonmodifiable factors such as severity of the initial injury, Glasgow coma scale score, pupillary response, age, and presence of additional physiological derangements such as hypoxia or hypotension. However, secondary insults continue to take place after the initial injury and resuscitation. The study hypothesis in the present research article was that hypoglycemia is an independent outcome prognosticator in severe traumatic brain injury. The study aimed to assess the role of glucose monitoring in the brain parenchyma as an independent outcome prognosticator and also to study its association with plasma glucose levels. ⋯ After decompressive craniectomy in severe TBI, there was a poor correlation between the plasma and CMD glucose concentration. A higher degree of variation was seen in the correlations for individual patients. Neither the mean blood glucose values nor the mean cerebral glucose values predicted the outcome at 3 months. The good outcome group had fewer episodes of both hyperglycemia and hypoglycemia.
-
Hypoxia is a critical secondary injury mechanism in traumatic brain injury (TBI), and early intervention to alleviate post-TBI hypoxia may be beneficial. NVX-108, a dodecafluoropentane perfluorocarbon, was screened for its ability to increase brain tissue oxygen tension (PbtO2) when administered soon after TBI. ⋯ NVX-108 caused an increase in PbtO2 following CCI-TBI in rats and should be evaluated further as a possible immediate treatment for TBI.