Articles: traumatic-brain-injuries.
-
Journal of neurosurgery · Apr 2015
Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury.
Transplanted multipotent mesenchymal stromal cells (MSCs) improve functional recovery in rats after traumatic brain injury (TBI). In this study the authors tested a novel hypothesis that systemic administration of cell-free exosomes generated from MSCs promotes functional recovery and neurovascular remodeling in rats after TBI. ⋯ The authors demonstrate for the first time that MSC-generated exosomes effectively improve functional recovery, at least in part, by promoting endogenous angiogenesis and neurogenesis and by reducing inflammation in rats after TBI. Thus, MSC-generated exosomes may provide a novel cell-free therapy for TBI and possibly for other neurological diseases.
-
In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. ⋯ In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.
-
The management of pregnant patients with traumatic brain injury is challenging. A multidisciplinary team approach is mandatory, and management should be individualized according to the type and extent of injury, maternal status, gestational age, and fetal status. ⋯ Her fetus was viable with no signs of distress and no detected placental abnormalities. Cesarean delivery was performed followed by craniotomy in the same setting under general anesthesia with good outcome of the patient and her baby.
-
Review Meta Analysis
Meta-analysis of the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury.
To evaluate the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury (TBI). ⋯ No benefit of therapeutic hypothermia in children with TBI is shown in this study; therapeutic hypothermia may increase the risk of mortality and arrhythmia. There is no evidence that therapeutic hypothermia improves prognosis of children with TBI; there is also no evidence that therapeutic hypothermia increases the risk of pneumonia and coagulation dysfunction. These results are limited by the quality of the included studies and need to be considered with caution. Further large-scale, well-designed RCTs on this topic are needed.
-
Journal of neurotrauma · Apr 2015
Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury (TBI) and its application for survival time determination.
The availability of markers able to provide insight into protein changes in the central nervous system after fatal traumatic brain injury (TBI) is limited. The present study reports on the semi-quantitative assessments of the immunopositive neuroglial cells (both astrocytes and oligodendrocytes) and neurons for S100 protein (S100), as well as neuronal specific enolase (NSE), in the cerebral cortex, hippocampus, and cerebellum with regard to survival time and cause of death. Brain tissues of 47 autopsy cases with TBI (survival times ranged between several minutes and 34 d) and 10 age- and gender-matched controls (natural deaths) were examined. ⋯ The percentages of NSE-positive neurons in the hippocampus were likewise significantly lower in cases with ABI, compared with controls (p < 0.05) but increased in cases with SBI in PCZ (p < 0.05). In conclusion, the present findings emphasize that S100 and NSE-immunopositivity might be useful for detecting the cause and process of death due to TBI. Further, S100-positivity in neurons may be helpful to estimate the survival time of fatal injuries in legal medicine.