Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jun 2015
Decompressive craniectomy reduces white matter injury following controlled cortical impact in mice.
Reduction and avoidance of increases in intracranial pressure (ICP) after severe traumatic brain injury (TBI) continue to be the mainstays of treatment. Traumatic axonal injury is a major contributor to morbidity after TBI, but it remains unclear whether elevations in ICP influence axonal injury. Here we tested the hypothesis that reduction in elevations in ICP after experimental TBI would result in decreased axonal injury and white matter atrophy in mice. ⋯ At 4 weeks post-injury, Open animals had an 18% reduction in white matter volume compared with 34% in Closed animals (p<0.01). Thus, our results indicate that CCI with decompressive craniectomy was associated with reductions in ICP and reduced pericontusional axonal injury and white matter atrophy. If similar in humans, therapeutic interventions that ameliorate intracranial hypertension may positively influence white matter injury severity.
-
The aim of our study was to evaluate the clinical outcomes in patients on preinjury Ibuprofen with traumatic brain injury. ⋯ In a matched cohort of trauma patients, preinjury Ibuprofen use was not associated with progression of initial intracranial hemorrhage and the need for neurosurgical intervention. Preinjury use of Ibuprofen as an independent variable should not warrant the need for a routine RHCT scan.
-
Journal of biophotonics · Jun 2015
Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis.
Transcranial low-level laser (light) therapy (LLLT) is a new non-invasive approach to treating a range of brain disorders including traumatic brain injury (TBI). We (and others) have shown that applying near-infrared light to the head of animals that have suffered TBI produces improvement in neurological functioning, lessens the size of the brain lesion, reduces neuroinflammation, and stimulates the formation of new neurons. In the present study we used a controlled cortical impact TBI in mice and treated the mice either once (4 h post-TBI, 1-laser), or three daily applications (3-laser) with 810 nm CW laser 36 J/cm(2) at 50 mW/cm(2). ⋯ The data suggest that the benefit of LLLT to the brain is partly mediated by stimulation of BDNF production, which may in turn encourage synaptogenesis. Moreover the pleiotropic benefits of BDNF in the brain suggest LLLT may have wider applications to neurodegenerative and psychiatric disorders. Neurological Severity Score (NSS) for TBI mice.
-
Expert Opin Investig Drugs · Jun 2015
ReviewInvestigational agents for treatment of traumatic brain injury.
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. To date, there are no pharmacologic agents proven to improve outcomes from TBI because all the Phase III clinical trials in TBI have failed. Thus, there is a compelling need to develop treatments for TBI. ⋯ TBI elicits both complex degenerative and regenerative tissue responses in the brain. TBI can lead to cognitive, behavioral, and motor deficits. Although numerous promising neuroprotective treatment options have emerged from preclinical studies that mainly target the lesion, translation of preclinical effective neuroprotective drugs to clinical trials has proven challenging. Accumulating evidence indicates that the mammalian brain has a significant, albeit limited, capacity for both structural and functional plasticity, as well as regeneration essential for spontaneous functional recovery after injury. A new therapeutic approach is to stimulate neurovascular remodeling by enhancing angiogenesis, neurogenesis, oligodendrogenesis, and axonal sprouting, which in concert, may improve neurological functional recovery after TBI.
-
It is time to stop using the term concussion as it has no clear definition and no pathological meaning. This confusion is increasingly problematic as the management of 'concussed' individuals is a pressing concern. Historically, it has been used to describe patients briefly disabled following a head injury, with the assumption that this was due to a transient disorder of brain function without long-term sequelae. ⋯ Using vague terminology for post-traumatic problems leads to misconceptions and biases in the diagnostic process, producing uninterpretable science, poor clinical guidelines and confused policy. We propose that the term concussion should be avoided. Instead neurologists and other healthcare professionals should classify the severity of traumatic brain injury and then attempt to precisely diagnose the underlying cause of post-traumatic symptoms.