Articles: traumatic-brain-injuries.
-
Review Meta Analysis
Meta-analysis of the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury.
To evaluate the efficacy and safety of therapeutic hypothermia in children with acute traumatic brain injury (TBI). ⋯ No benefit of therapeutic hypothermia in children with TBI is shown in this study; therapeutic hypothermia may increase the risk of mortality and arrhythmia. There is no evidence that therapeutic hypothermia improves prognosis of children with TBI; there is also no evidence that therapeutic hypothermia increases the risk of pneumonia and coagulation dysfunction. These results are limited by the quality of the included studies and need to be considered with caution. Further large-scale, well-designed RCTs on this topic are needed.
-
Journal of neurotrauma · Apr 2015
ReviewThe manifestation of anxiety disorders after traumatic brain injury: A review.
The development of anxiety disorders after a traumatic brain injury (TBI) is a strong predictor of social, personal, and work dysfunction; nevertheless, the emergence of anxiety has been largely unexplored and poorly understood in the context of TBI. This article provides an overview of the limited published research to date on anxiety disorders that are known to develop after TBI, including post-traumatic stress disorder, generalized anxiety disorder, obsessive-compulsive disorder, panic disorder, specific phobia, and social anxiety disorder. ⋯ Putative neural correlates will be reviewed where known. A discussion of current treatment options and avenues for further research are explored.
-
Journal of neurotrauma · Apr 2015
Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury (TBI) and its application for survival time determination.
The availability of markers able to provide insight into protein changes in the central nervous system after fatal traumatic brain injury (TBI) is limited. The present study reports on the semi-quantitative assessments of the immunopositive neuroglial cells (both astrocytes and oligodendrocytes) and neurons for S100 protein (S100), as well as neuronal specific enolase (NSE), in the cerebral cortex, hippocampus, and cerebellum with regard to survival time and cause of death. Brain tissues of 47 autopsy cases with TBI (survival times ranged between several minutes and 34 d) and 10 age- and gender-matched controls (natural deaths) were examined. ⋯ The percentages of NSE-positive neurons in the hippocampus were likewise significantly lower in cases with ABI, compared with controls (p < 0.05) but increased in cases with SBI in PCZ (p < 0.05). In conclusion, the present findings emphasize that S100 and NSE-immunopositivity might be useful for detecting the cause and process of death due to TBI. Further, S100-positivity in neurons may be helpful to estimate the survival time of fatal injuries in legal medicine.
-
Journal of neurotrauma · Apr 2015
Structured interview for Mild Traumatic Brain Injury after military blast: interrater agreement and development of diagnostic algorithm.
The existing gold standard for diagnosing a suspected previous mild traumatic brain injury (mTBI) is clinical interview. But it is prone to bias, especially for parsing the physical versus psychological effects of traumatic combat events, and its inter-rater reliability is unknown. Several standardized TBI interview instruments have been developed for research use but have similar limitations. ⋯ The accuracy of this algorithm, when applied against the actual physician consensus in sample 2, was almost perfect (correctly classified = 97%; Cohen's kappa = 0.91). In conclusion, we found that highly trained clinicians often disagree on historical blast-related mTBI determinations. A fully structured interview algorithm was developed from their consensus diagnosis that may serve to enhance diagnostic standardization for clinical research in this population.
-
Journal of neurotrauma · Apr 2015
Multicenter StudyCould a traumatic epidural hematoma on early CT tell us about its future development? A multi-center retrospective study in China.
Our aim for this study was to quantitatively develop an early epidural hematoma (EDH) natural evolutionary curve and assess association of the most common radiological signs of initially nonsurgical supratentorial EDHs on early computed tomography (CT), in addition to their CT time for EDH enlargement. We retrospectively reviewed pertinent data of supratentorial EDH cases with CT ≤ 6 h postinjury (1997-2013) in three medical institutions in Shanghai. Cases involved were divided into six groups according to their initial CT time postinjury (≤ 1, 1-2, 2-3, 3-4, 4-5, and 5-6 h for groups 1 through 6, respectively). ⋯ Multi-variate analysis succeeded in determining two risk factors for EDH enlargement ≥ 30 mL and EDH enlargement requiring an operation for EDH cases with an early CT/EDH volume >10 mL on CT performed ≤ 2 h and EDH located at the temporal or temporoparietal region on CT ≤ 1 h post brain injury. Using recursive partitioning analysis, "high-risk" identification criteria were derived to predict EDH enlargement ≥ 30 mL with sensitivity of 90.5% (95% confidence interval [CI], 77.9-96.2), specificity of 60.1% (95% CI, 54.3-65.7), and EDH enlargement requiring surgery with sensitivity of 100.0% (95% CI, 89.9-100.0), and specificity of 59.9% (95% CI, 54.1-65.4). A redo-CT 5 ∼ 6 h post impact for cases at high risk is recommended.