Articles: traumatic-brain-injuries.
-
Barbiturate coma therapy (BCT) is a choice treatment for refractory intracranial hypertension after all surgical or medical managements have failed to control the intracranial pressure (ICP). It helps to reduce cerebral blood flow, cerebral metabolic rate of oxygen consumption and ICP. ⋯ One of the underreported, but life-threatening complications is refractory hypokalemia, which can lead to subsequent rebound hyperkalemia after sudden cessation. We report our experience of managing unusual complication of refractory hypokalemia during BCT with thiopentone in postdecompressive craniectomy patient.
-
Acta Radiol Short Rep · Jan 2015
Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites.
Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). ⋯ The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI.
-
Experimental neurology · Jan 2015
Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia.
Mild elevations in core temperature can occur in individuals involved in strenuous activities that are risky for potentially sustaining a mild traumatic brain injury (mTBI) or concussion. Recently, we have discovered that mild elevations in brain temperature can significantly aggravate the histopathological consequences of mTBI. However, whether this exacerbation of brain pathology translates into behavioral deficits is unknown. ⋯ These results indicate that brain temperature is an important variable for mTBI outcome and that mildly elevated temperatures at the time of injury result in persistent cognitive deficits. Importantly, cooling to normothermia after mTBI prevents the development of long-term cognitive deficits caused by hyperthermia. Reducing temperature to normothermic levels soon after mTBI represents a rational approach to potentially mitigate the long-term consequences of mTBI.
-
Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. ⋯ In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.
-
Brain injury : [BI] · Jan 2015
Case ReportsInfluence of intrathecal baclofen on the level of consciousness and mental functions after extremely severe traumatic brain injury: brief report.
Whenever oral treatment or botulinum toxin injections fail to control severe spasticity, a trial with intrathecal baclofen is recommended no earlier than 1 year after brain injury. When irreversible contractures are to be avoided, such a trial might be done earlier. Some have briefly reported cognitive modifications with this treatment. ⋯ Intrathecal baclofen should be considered within the first year after brain injury whenever spasticity does not respond to medication. ITB lessens the degree of spasticity which in turn facilitates care and, thus, has the potential to limit contractures. After severe brain injury, this treatment might trigger recovery from altered states of consciousness, improve cognition and facilitate rehabilitation.