Articles: traumatic-brain-injuries.
-
Randomized Controlled Trial
Effects of remote ischemic preconditioning in severe traumatic brain injury: A single-center randomized controlled trial.
Traumatic brain injury (TBI) is a significant contributor to global mortality and impairment. Experimental data has shown the advantages of remote ischemic preconditioning (RIPC) in treating brain injury, however, there is a lack of evidence-based medicine regarding its clinical effectiveness and safety. ⋯ The results of this study suggest that RIPC has the potential to enhance clinical outcomes, mitigate nerve damage, and reduce both hospital expenses and length of stay in patients with severe TBI. The use of RIPC is a reliable and efficient method for managing severe TBI.
-
Altered reward processing is increasingly recognised as a crucial mechanism underpinning apathy in many brain disorders. However despite its clinical relevance, little is known about the mechanisms of apathy following moderate-to-severe traumatic brain injury (TBI). In real-life situations, reward representations encompass both foreground (gains from current activity) and background (potential gains from the broader environment) elements. This latter variable provides a crucial set-point for switching behaviour in many naturalistic settings. We hypothesised apathy post-TBI would be associated with disrupted background reward sensitivity. ⋯ These results provide the first evidence directly linking disrupted background reward processing to apathy in any brain disorder. They identify a novel mechanism for apathy following moderate-to-severe TBI, and point towards novel interventions to improve this debilitating complication of head injury.
-
Scand J Trauma Resus · Sep 2023
Pre-hospital endotracheal intubation in severe traumatic brain injury: ventilation targets and mortality-a retrospective analysis of 308 patients.
Traumatic brain injury (TBI) remains one of the main causes of mortality and long-term disability worldwide. Maintaining physiology of brain tissue to the greatest extent possible through optimal management of blood pressure, airway, ventilation, and oxygenation, improves patient outcome. We studied the quality of prehospital care in severe TBI patients by analyzing adherence to recommended target ranges for ventilation and blood pressure, prehospital time expenditure, and their effect on mortality, as well as quality of prehospital ventilation assessed by arterial partial pressure of CO2 (PaCO2) at hospital admission. ⋯ PaCO2 at hospital admission is strongly associated with mortality risk, but normocapnia is achieved only in a minority of patients. Therefore, the time required for placement of an arterial cannula and prehospital blood gas analysis may be warranted in severe TBI patients requiring on-scene tracheal intubation.