Articles: traumatic-brain-injuries.
-
Randomized Controlled Trial
Impact of continuous hypertonic (NaCl 20%) saline solution on renal outcomes after traumatic brain injury (TBI): a post hoc analysis of the COBI trial.
To evaluate if the increase in chloride intake during a continuous infusion of 20% hypertonic saline solution (HSS) is associated with an increase in the incidence of acute kidney injury (AKI) compared to standard of care in traumatic brain injury patients. ⋯ Despite a significant increase in chloride intake, a continuous infusion of HSS was not associated with AKI in moderate-to-severe TBI patients. Our study does not confirm the potentially detrimental effect of chloride load on kidney function in ICU patients.
-
Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). ⋯ Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.
-
Background: Acute respiratory distress syndrome (ARDS) commonly develops in traumatic brain injury (TBI) patients and is a risk factor for poor prognosis. We designed this study to evaluate the performance of several machine learning algorithms for predicting ARDS in TBI patients. Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were eligible for this study. ⋯ Several mutual top features in the random forest and AdaBoost were discovered including age, initial systolic blood pressure and heart rate, Abbreviated Injury Score chest, white blood cells, platelets, and international normalized ratio. Conclusions: The random forest and AdaBoost based models have stable and good performance for predicting ARDS in TBI patients. These models could help clinicians to evaluate the risk of ARDS in early stages after TBI and consequently adjust treatment decisions.
-
To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. ⋯ The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.
-
Scand J Trauma Resus · Jan 2023
Diagnostic performance of biomarker S100B and guideline adherence in routine care of mild head trauma.
The Scandinavian Neurotrauma Committee (SNC) has recommended the use of serum S100B as a biomarker for mild low-risk Traumatic brain injuries (TBI). This study aimed to assess the adherence to the SNC guidelines in clinical practice and the diagnostic performance of S100B in patients with TBI. The aims of this study were to examine adherence to the SNC guideline and the diagnostic accuracy of serum protein S100B. ⋯ Adherence to guidelines was low and associated with a higher admission rate than non-adherence practice but no significant increase in missed TICH or death associated with non-adherence to guideline was found. In routine care, we found that the sensitivity and NPV of serum protein S100B was excellent and safely ruled out TICH when measured in the patient category recommended by the guideline. However, measuring serum protein S100B in patients not recommended by the guideline rendered unacceptably low sensitivity with possible missed TICHs as a consequence. To further delineate the magnitude and impact of non-adherence, more studies are needed.