Articles: traumatic-brain-injuries.
-
The aim of this study was to describe the utilization patterns of brain tissue oxygen (PbtO2) monitoring following severe traumatic brain injury (TBI) and determine associations with mortality, health care use, and pulmonary toxicity. ⋯ PbtO2 monitor utilization varied widely throughout the study period by calendar year and hospital. PbtO2 monitoring in addition to ICP monitoring, compared with ICP monitoring alone, was associated with a decreased in-hospital mortality, a longer length of stay, and a similar risk of ARDS. These findings provide further guidance for clinicians caring for patients with severe TBI while awaiting completion of further randomized controlled trials.
-
Journal of neurotrauma · Apr 2022
Combined Inhibition of Fyn and c-Src Protects Hippocampal Neurons and Improves Spatial Memory via ROCK after Traumatic Brain Injury.
Our previous studies demonstrated that traumatic brain injury (TBI) and ventricular administration of thrombin caused hippocampal neuron loss and cognitive dysfunction via activation of Src family kinases (SFKs). Based on SFK localization in brain, we hypothesized SFK subtypes Fyn and c-Src, as well as SFK downstream molecule Rho-associated protein kinase (ROCK), contribute to cell death and cognitive dysfunction after TBI. We administered nanoparticle wrapped small interfering RNA (siRNA)-Fyn and siRNA-c-Src, or ROCK inhibitor Y-27632 to adult rats subjected to moderate lateral fluid percussion (LFP)-induced TBI. ⋯ The combination of siRNA-Fyn and siRNA-c-Src, but neither alone, prevented hippocampal neuron loss and spatial memory deficits after TBI. The ROCK inhibitor Y-27632 also prevented hippocampal neuronal loss and spatial memory deficits after TBI. The data suggest that the combined actions of three kinases (Fyn, c-Src, ROCK) mediate hippocampal neuronal cell death and spatial memory deficits produced by LFP-TBI, and that inhibiting this pathway prevents the TBI-induced cell death and memory deficits.
-
We evaluated the association between D-dimer (DD) levels and long-term neurological prognoses among patients with isolated traumatic brain injury. ⋯ We revealed an association between DD levels and poor long-term neurological outcomes among patients with isolated traumatic brain injury.
-
Observational Study
Serum Caspase-1 as an Independent Prognostic Factor in Traumatic Brain Injured Patients.
The objectives of this study were to assess the association between serum caspase 1 levels and known clinical and radiological prognostic factors and determine whether caspase 1was a more powerful predictor of outcome after traumatic brain injury (TBI) than clinical indices alone, to determine the association between the serum levels of caspase 1 and the 6-month outcome, and to evaluate if there is any association between caspase 1 with clinical and radiological variables. ⋯ In this cohort of patients with TBI, we show that serum caspase 1 protein levels on admission are an independent prognostic factor after TBI. Serum caspase 1 levels on admission are higher in patients who will present unfavorable outcomes 6 months after TBI. Caspase 1 levels on admission are associated with the injury severity determined by the Glasgow Coma Scale.
-
Eur J Trauma Emerg Surg · Apr 2022
Microwave scan and brain biomarkers to rule out intracranial hemorrhage: study protocol of a planned prospective study (MBI01).
The aim of this planned study is to evaluate the ability of a cranial microwave scanner in conjunction with nine brain biomarkers (Aβ40, Aβ42, GFAP, H-FABP, S100B, NF-L, NSE, UCH-L1 and IL-10) to detect and rule out traumatic intracranial hemorrhage in an emergency department setting. Traumatic brain injury is a world-wide topic of interest for researchers and clinicians. It affects 2% of the population per annum and presents challenges for physicians as patients' initial signs and symptoms do not always correlate with the extent of brain injury. The gold standard for diagnosis of intracranial hemorrhage is head computerized tomography (CT) with the drawbacks of high cost and radiation exposure. A fast, secure way of diagnosing without these drawbacks has potential to make care more effective and reduce cost. ⋯ gov identifier: NCT04666766. Registered December 11, 2020.