Articles: traumatic-brain-injuries.
-
The prehospital prediction of the radiographic diagnosis of traumatic brain injury (TBI) in hemorrhagic shock patients has the potential to promote early therapeutic interventions. However, the identification of TBI is often challenging and prehospital tools remain limited. While the Glasgow Coma Scale (GCS) score is frequently used to assess the extent of impaired consciousness after injury, the utility of the GCS scores in the early prehospital phase of care to predict TBI in patients with severe injury and concomitant shock is poorly understood. ⋯ The ability to accurately predict the presence of TBI in the prehospital phase of care is essential. The utility of the GCS scores in the early prehospital phase of care to predict TBI in patients with severe injury and concomitant shock is limited. The use of novel scoring systems and improved technology are needed to promote the accurate early diagnosis of TBI.
-
Clinical prediction models serve as valuable instruments for assessing the risk of crucial outcomes and facilitating decision-making in clinical settings. Constructing these models requires nuanced analytical decisions and expertise informed by the current statistical literature. Access and thorough understanding of such literature may be limited for neurocritical care physicians, which may hinder the interpretation of existing predictive models. ⋯ Discussion encompasses critical elements such as model flexibility, hyperparameter selection, data imbalance, cross-validation, model assessment (discrimination and calibration), prediction instability, and probability thresholds. The intricate interplay among these components, the data set, and the clincal context of neurocritical care is elaborated. Leveraging this comprehensive exploration of statistical learning can enhance comprehension of articles encompassing model generation, tailored clinical care, and, ultimately, better interpretation and clinical applicability of predictive models.
-
Observational Study
Elevated cerebrospinal fluid galectin-3 and associated cytokines after severe traumatic brain injury in patients.
This study aimed to investigate the galectin-3 and associated cytokines levels in the cerebrospinal fluid (CSF) of severe traumatic brain injury (sTBI) patients. Temporal CSF expression of galectin-3 and associated cytokines levels in sTBI patients within 1-week post-injury were studied using the multiplex bead array. STBI patient group was stratified using the Modified Rankin Score (mRS) into 3 groups: mRS 6 (died), mRS 5 (severely disabled) and mRS 1-4 (mild-to-moderately disabled) group. ⋯ Receiver operating characteristic curve analyses revealed a significant area under the curve for comparison between mRS 6 and mRS 5 groups for galectin-3 and IL-6. No significant differences in sex, age, Glasgow Coma Scale score, C-reactive protein levels and types of TBI-induced hemorrhages were observed between the groups. CSF galectin-3 and associated cytokines, especially IL-6, CCL-2 and CCL-20 levels were different within sub-groups of sTBI patients, suggesting their potential use in sTBI prognostics.
-
Review Meta Analysis Comparative Study
Temporal Delays in the Management of Traumatic Brain Injury: A Comparative Meta-Analysis of Global Literature.
A meta-analysis was conducted to compare: 1) time from traumatic brain injury (TBI) to the hospital, and 2) time within the hospital to intervention or surgery, by country-level income, World Health Organization region, and healthcare payment system. ⋯ Our study concludes that TBI patients in low- and middle-income countries within African Region countries face prolonged delays in both prehospital and intrahospital management compared to high-income countries. Additionally, patients within Single-Payer Health System experienced prolonged intrahospital delays. An urgent need to address global disparities in neurotrauma care has been highlighted.
-
Journal of neurotrauma · Aug 2024
Interpreting Change in Disorders of Consciousness using the Coma Recovery Scale-Revised.
The purpose of this study was to differentiate clinically meaningful improvement or deterioration from normal fluctuations in patients with disorders of consciousness (DoC) following severe brain injury. We computed indices of responsiveness for the Coma Recovery Scale-Revised (CRS-R) using data from a clinical trial of 180 participants with DoC. We used CRS-R scores from baseline (enrollment in a clinical trial) and a 4-week follow-up assessment period for these calculations. ⋯ CRS-R indices of responsiveness can support clinicians and researchers in discerning when behavioral changes in patients with DoC exceed measurement error. Notably, the minimal detectable change can support the detection of patients who make a "true" change within or across states of consciousness. Our findings highlight that the continued use of ordinal scores may result in incorrect inferences about the degree and relevance of a change score.