Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Jan 2017
Unfolded Maps for Quantitative Analysis of Cortical Lesion Location and Extent after Traumatic Brain Injury.
We aimed to generate two-dimensional (2D) unfolded cortical maps from magnetic resonance (MR) images to delineate the location of traumatic brain injury (TBI)-induced cortical damage in functionally diverse cytoarchitectonic areas of the cerebral cortex, and to predict the severity of functional impairment after TBI based on the lesion location and extent. Lateral fluid-percussion injury was induced in adult rats and T2 maps were acquired with magnetic resonance imaging (MRI) at 3 days post-TBI. Somatomotor deficits were assessed based on the composite neuroscore and beam balance test, and spatial learning was assessed in the Morris water maze. ⋯ Subsequent receiver operating characteristic analysis indicated that severity of the MRI lesion in S1ULp and S2 was a sensitive and specific predictor of poor performance in the beam balance test. Moreover, MRI lesions in the S1ULp, S2, S1BF, and Ect and PRh cortices predicted poor performance in the Morris water maze test. Our findings indicate that 2D-unfolded cortical maps generated from MR images delineate the distribution of cortical lesions in functionally different cytoarchitectonic regions, which can be used to predict the TBI-induced functional impairment.
-
Journal of neurotrauma · Jan 2017
TREM2 deficiency alters acute macrophage distribution and improves recovery after TBI.
Traumatic brain injury (TBI) affects 1.7 million persons annually in the United States (Centers for Disease Control and Prevention). There is increasing evidence that persons exposed to TBI have increased risk of the development of multiple neurodegenerative conditions, including Alzheimer disease (AD). TBI triggers a strong neuroinflammatory response characterized by astrogliosis, activation of microglia, and infiltration of peripheral monocytes. ⋯ Further, Trem2-/- mice exposed to TBI exhibited enhanced macrophage activation near the lesion, but significantly less macrophage activation away from the lesion when compared with B6 mice exposed to TBI. In addition, at 120 DPI, Trem2-/- mice exposed to TBI demonstrated reduced hippocampal atrophy and rescue of TBI-induced behavioral changes when compared with B6 mice exposed to TBI. Taken together, this study suggests that TREM2 deficiency influences both acute and chronic responses to TBI, leading to an altered macrophage response at early time points, and improved pathological and functional outcomes at later time points.
-
Journal of neurotrauma · Jan 2017
Hemolysed blood elicits - calcium antagonist and high CO2 reversible - constrictions via elevation of Ca2+ in isolated cerebral arteries.
During acute subarachnoid hemorrhage, blood is hemolyzed, which is followed by a significant cerebrovascular spasm resulting in a serious clinical condition. Interestingly, however, the direct vasomotor effect of perivascular hemolyzed blood (HB) has not yet been characterized, preventing the assessment of contribution of vasoconstrictor mechanisms deriving from brain tissue and/or blood and development of possible treatments. We hypothesized that perivascular HB reduces the diameter of the cerebral arteries (i.e., basilar artery [BA]; middle cerebral artery [MCA]) by elevating vascular tissue [Ca2+]i level. ⋯ After washout of HB, nitric oxide-mediated dilations remained significantly reduced compared to control. HB significantly increased the ratiometric Ca signal, which returned to control level after washout. In conclusion, perivascular hemolyzed blood elicits significant-nifedipine and high CO2 reversible-constrictions of isolated BAs and MCAs, primarily by increasing intracellular Ca2+, findings that can contribute to the refinement of local treatment of subarachnoid hemorrhage.
-
Journal of neurotrauma · Jan 2017
Comprehensive Profiling of Modulation of Nitric Oxide levels and Mitochondrial Activity in Injured Brain: An Experimental Study based on the Fluid Percussion Injury Model in Rats.
Nitric oxide (NO) has frequently been associated with secondary damage after brain injury. However, average NO levels in different brain regions before and after traumatic brain injury (TBI) and its role in post-TBI mitochondrial dysfunction remain unclear. In this comprehensive profiling study, we demonstrate for the first time that basal NO levels vary significantly in the healthy cortex (0.44 ± 0.04 μM), hippocampus (0.26 ± 0.03 μM), and cerebellum (1.24 ± 0.08 μM). ⋯ NO-mediated impairment of mitochondrial state 3 respiration dependent on complex I substrates was transient and confined to the ipsilateral cortex. Our results demonstrate that NO dynamics and associated effects differ in various regions of the injured brain. A potential association between the observed mitochondrial electron flow through complex I, but not complex II, and the modulation of TBI induced NO levels in different brain regions has to be prospectively analyzed in more detail.
-
Journal of neurotrauma · Jan 2017
Multicenter StudyPredicting blunt cerebrovascular injury in pediatric trauma: Validation of the "Utah Score".
Risk factors for blunt cerebrovascular injury (BCVI) may differ between children and adults, suggesting that children at low risk for BCVI after trauma receive unnecessary computed tomography angiography (CTA) and high-dose radiation. We previously developed a score for predicting pediatric BCVI based on retrospective cohort analysis. Our objective is to externally validate this prediction score with a retrospective multi-institutional cohort. ⋯ The Utah Score misclassified 16.6% of patients in the validation cohort. The Utah Score for predicting BCVI in pediatric trauma patients was validated with a low misclassification rate using a large, independent, multicenter cohort. Its implementation in the clinical setting may reduce the use of CTA in low-risk patients.