Articles: traumatic-brain-injuries.
-
Journal of neurosurgery · Mar 2017
Traumatic hemorrhagic brain injury: impact of location and resorption on cognitive outcome.
OBJECTIVE Hemorrhagic contusions are often the most visible lesions following traumatic brain injury. However, the incidence, location, and natural history of traumatic parenchymal hemorrhage and its impact on neurological outcome have been understudied. The authors sought to examine the location and longitudinal evolution of traumatic parenchymal hemorrhage and its association with cognitive outcome. ⋯ CONCLUSIONS Traumatic parenchymal hemorrhages are largely clustered in the frontal and temporal lobes, and significant residual blood products are present at 6 months postinjury, a potential source of ongoing secondary brain injury. Neuropsychological outcome is closely tied to lesion volume size, particularly in the temporal lobe, where larger GRE and FLAIR volumes are associated with more brain atrophy and worse SDMT scores. Interestingly, larger volumes of hemorrhage resorption were associated with worse SDMT and TMT-B scores, suggesting that the initial tissue damage had a lasting impact on attention and executive function.
-
Impaired hemostasis represents a major risk factor for increased morbidity and mortality in patients with traumatic intracranial hemorrhage. In cases of polytrauma with major bleeding, hyperfibrinolysis may develop and this may result in excessive coagulopathy. ⋯ The basic principles of the pathophysiology and effects of coagulation impairment in this patient population are reviewed. Furthermore, the use of specific coagulation tests and the administration of hemostatic substances are discussed.
-
Experimental neurology · Mar 2017
Neuropathology and neurobehavioral alterations in a rat model of traumatic brain injury to occupants of vehicles targeted by underbody blasts.
Many victims of blast-induced traumatic brain injury are occupants of military vehicles targeted by land mines. Recently improved vehicle designs protect these individuals against blast overpressure, leaving acceleration as the main force potentially responsible for brain injury. We recently developed a unique rat model of under-vehicle blast-induced hyperacceleration where exposure to acceleration as low as 50G force results in histopathological evidence of diffuse axonal injury and astrocyte activation, with no evidence of neuronal cell death. ⋯ All rats exposed to 2400G acceleration survived and exhibited transient deficits in working memory and long-term anxiety like behaviors, while those exposed to 1200 acceleration G force only demonstrated increased anxiety. Behavioral deficits were associated with acute microglia/macrophage activation, increased hippocampal neuronal death, and reduced levels of tight junction- and synapse- associated proteins. Taken together, these results suggest that exposure of rats to high underbody blast-induced G forces results in neurologic injury accompanied by neuronal apoptosis, neuroinflammation and evidence for neurosynaptic alterations.
-
Traumatic brain injury (TBI) is extremely common across the lifespan and is an established risk factor for dementia. The cognitive profile of the large and growing population of older adults with prior TBI who do not have a diagnosis of dementia, however, has not been well described. Our aim was to describe the cognitive profile associated with prior TBI exposure among community-dwelling older adults without dementia-an understudied but potentially vulnerable population. ⋯ In this population-based study of community-dwelling older adults without dementia, those with prior TBI with LOC were more likely to report subjective memory impairment compared to those without TBI even after adjustment for demographics, medical comorbidities, and active depression. Lack of greater objective cognitive impairment among those with versus without TBI may be due to poor sensitivity of the cognitive battery or survival bias, or may suggest that post-TBI cognitive impairment primarily affects executive function and processing speed, which were not rigorously assessed in this study. Our findings show that among community-dwelling non-demented older adults, history of TBI is common but may not preferentially impact cognitive domains of episodic memory, attention, working memory, verbal semantic fluency, or calculation.