Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Oct 2016
Probenecid and N-acetylcysteine Prevent Loss of Intracellular Glutathione and Inhibit Neuronal Death after Mechanical Stretch Injury In Vitro.
Probenecid and N-acetylcysteine (NAC) can preserve intracellular levels of the vital antioxidant glutathione (GSH) via two distinct biochemical pathways. Probenecid inhibits transporter-mediated GSH efflux and NAC serves as a cysteine donor for GSH synthesis. We hypothesized that probenecid and NAC alone would maintain intracellular GSH concentrations and inhibit neuronal death after traumatic stretch injury, and that the drugs in combination would produce additive effects. ⋯ Interestingly, caspase 3 activity 24 h after mechanical trauma was more prominent in XX-neurons, and treatment effects (probenecid, NAC, and Pro-NAC) were observed in XX- but not XY-neurons; however, XY-neurons were ultimately more vulnerable to mechanical stretch-induced injury than their XX counterparts, as was evidenced by more neuronal death detected by LDH release and PI uptake. In addition, after stretch injury in HT22 hippocampal cells, both NAC and probenecid were highly effective at reducing oxidative stress detected by dichlorofluorescein fluorescence. These in vitro data support further testing of this drug combination in models of traumatic neuronal injury in vivo.
-
Mild traumatic brain injury (mTBI) leads to long-term cognitive sequelae in a significant portion of patients. Disruption of normal neural communication across functional brain networks may explain the deficits in memory and attention observed after mTBI. In this study, we used magnetoencephalography (MEG) to examine functional connectivity during a resting state in a group of mTBI subjects (n = 9) compared with age-matched control subjects (n = 15). ⋯ Our data suggest reduced local efficiency in different brain regions in mTBI patients. In conclusion, MEG can be a potential tool to investigate and detect network alterations in patients with mTBI. The value of MEG to reveal potential neurophysiological biomarkers for mTBI patients warrants further exploration.
-
Prediction of medical outcomes may potentially benefit from using modern statistical modeling techniques. We aimed to externally validate modeling strategies for prediction of 6-month mortality of patients suffering from traumatic brain injury (TBI) with predictor sets of increasing complexity. ⋯ In the area of predicting mortality from TBI, nonlinear and nonadditive effects are not pronounced enough to make modern prediction methods beneficial.
-
Worldviews Evid Based Nurs · Oct 2016
ReviewSystematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes.
Traumatic brain injury (TBI) is an acquired brain injury that occurs when there is sudden trauma that leads to brain damage. This acute complex event can happen when the head is violently or suddenly struck or an object pierces the skull or brain. The current principal treatment of TBI includes various pharmaceutical agents, hyperbaric oxygen, and hypothermia. There is evidence that secondary injury from a TBI is specifically related to oxidative stress. However, the clinical management of TBI often does not include antioxidants to reduce oxidative stress and prevent secondary injury. ⋯ By incorporating antioxidant therapies into practice, clinicians can help attenuate the oxidative posttraumatic brain damage and optimize patients' recovery.