Articles: traumatic-brain-injuries.
-
Scand J Trauma Resus · Nov 2016
Multicenter Study Observational StudyTraumatic brain injury patient volume and mortality in neurosurgical intensive care units: a Finnish nationwide study.
Differences in outcomes after traumatic brain injury (TBI) between neurosurgical centers exist, although the reasons for this are not clear. Thus, our aim was to assess the association between the annual volume of TBI patients and mortality in neurosurgical intensive care units (NICUs). ⋯ We did not find any association between annual TBI patient volume and 6-month mortality in NICUs. These findings should be interpreted taking into account that we only included NICUs, which by international standards all treated high volumes of TBI patients, and that we were not able to study the effect of NICU volume on neurological outcome.
-
Quantifying injury tolerance for concussion is complicated by variability in the type, severity, and time course of post-injury physiological and behavioral changes. The current study outlined acute and chronic changes in behavioral metrics following rotational acceleration-induced concussion in rats. The Medical College of Wisconsin (MCW) rotational injury model independently controlled magnitude and duration of the rotational acceleration pulse. ⋯ Changes in emotionality evolved between acute and chronic assessments, in some cases increasing in severity and in others reversing polarity. These findings highlight the complexity of quantifying injury tolerance for concussion and demonstrate a need to incorporate rotational acceleration magnitude and duration in proposed injury tolerance metrics. Rotational velocity on its own was not a strong predictor of the magnitude or type of acute behavioral changes following concussion, although its combination with rotational acceleration magnitude using multivariate analysis was the strongest predictor for acute recovery time and some chronic emotional-type behavioral changes.
-
J Head Trauma Rehabil · Nov 2016
Emergency Department Evaluation of Traumatic Brain Injury in the United States, 2009-2010.
To determine the dimensions of traumatic brain injury (TBI) evaluation in US emergency department (EDs) to inform potential application of novel diagnostic tests. ⋯ The ED is the main gateway to medical care for millions of patients evaluated for TBI each year. Novel diagnostic tests are needed to improve ED diagnosis and management of TBI.
-
Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. ⋯ Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
-
J Neurosurg Pediatr · Nov 2016
The application of adult traumatic brain injury models in a pediatric cohort.
OBJECTIVE There is increasing interest in the use of predictive models of outcome in adult head injury. Two international models have been identified to be reliable modalities for predicting outcome: the Corticosteroid Randomisation After Significant Head Injury (CRASH) model, and the International Mission on Prognosis and Analysis of randomized Controlled Trials in TBI (IMPACT) model. However, these models are designed only to identify outcomes in adult populations. ⋯ For the IMPACT-Core model, the SMtR was 1.03 and the model was also well calibrated (χ2 = 8.99, p = 0.34) and had good discrimination (AUROC = 0.85). Poor outcome was observed in 17% of the cohort and identified with the CRASH-Basic and IMPACT-Core models to varying degrees: standardized morbidity ratio = 0.89 vs 0.67, respectively; calibration = 6.5 (χ2) and 0.59 (p value) versus 8.52 (χ2) and 0.38 (p value), respectively; and discrimination (AUROC) = 0.92 versus 0.83, respectively. CONCLUSIONS Adult head injury models may be applied with sufficient accuracy to identify predictors of morbidity and mortality in pediatric TBI.